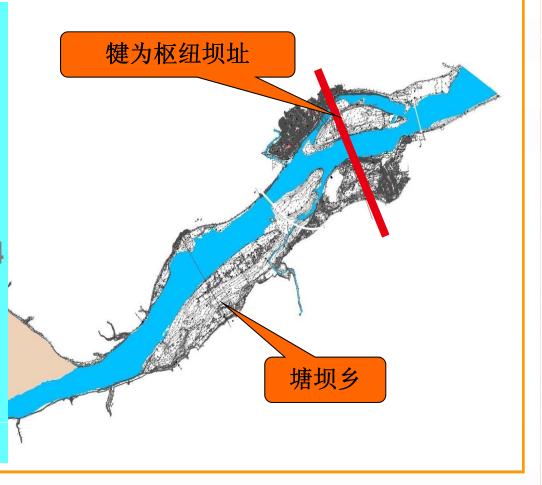
CCJC 中国能建广西院

胶凝砂砾石坝在砂卵砾石深覆 盖层基础上的应用初探

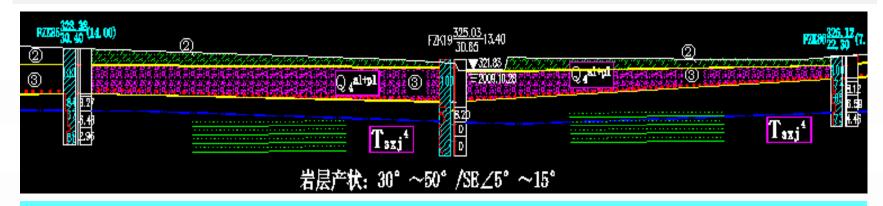
2014年10月

引言

胶凝砂砾石坝是介于碾压混凝土坝和堆石坝间的一种 新坝型,经过近40年的探索、发展以及工程实践证明, 胶凝砂砾石坝具有节约工程投资、施工快速、环境适应性 好等显著优点。但是对胶凝砂砾石坝坝体强度低和离散性 大等特点的研究目前还处于较初级的阶段,其设计理论体 系还需要进一步发展完善。胶凝砂砾石坝型对不同基础的 适应性,是目前的一个研究的方向,存在较大的开拓空间 总结目前国内外的工程实例,胶凝砂砾石坝均选用岩石基 础作为建基面,我们通过在岷江犍为航电枢纽工程库区防 洪堤的设计,总结了一些在砂卵砾石深覆盖层基础上设计 胶凝砂砾石坝的截面、进行稳定及应力分析、坝体构造设 计等方面的经验,与大家共同探讨。


1 概述

岷江犍为航电航电枢纽工 程位于四川岷江干流下游河段, 是岷江下游河段(乐山一宜宾) 航运和水电规划的第三个梯级, 坝址位于乐山市犍为县城上游 3km处。水库正常蓄水位为 335.0m, 总库容为2.27亿m³, 总 装机容量为500MW, 为河床式电 站,闸坝式挡水建筑物,III级 船闸通航1000吨级船舶。工程 等级为二等,工程规模为大(2) 型。



1 概述

库区塘坝乡防护工程位 于坝址上游右岸的塘坝乡, 由防洪堤、泵站及排涝隧洞 组成。防洪堤布置在镇江坝 内过洪沟右侧,由距坝址约 3.6 km处向上游延伸,长约 2.755km。堤防工程级别为4 级,设防标准为20年一遇洪 水(Q=36100m³/s),设计 水位为335.12m, 防洪堤堤 顶高程为336.10m,防浪墙 顶高程为337.30m。

1 概述

防洪堤地基土的特征为:覆盖层冲洪积层总厚度 8.5m~17.6m,具双层结构,表部为粉土或砂质粉 土②层,下部为卵石③层,稍密~中密结构,厚度 9.0m~15.6m。基岩顶板高程310.68m~328.76m, 为泥质粉砂岩、泥岩夹灰黑色碳质页岩及砂岩。砂 卵石③层的力学强度较好,地基承载力为400kPa, 设计作为堤防地基持力层,建基面最低高程为 323.2m,堤防最大堤高14.1m。

2 断面设计

胶凝砂砾石坝主要靠自身重力来维持稳定, 而坝体的重量主要决定于坝的形状和尺寸。目前 胶凝砂砾石坝断面设计一般是按经验进行初步拟 定,多是先采用对称的梯形断面进行分析,研究 不同荷载工况下坝体稳定及坝底应力分布变化, 坝体内部应力水平,再通过调整断面上下游坡比 选择和优化出最合适的工程断面。根据本工程情 况,考虑坝顶交通和堤防的运行维护要求, 宽度选定为6m,参考国内外已建胶凝砂砾石坝断 面上下游坡比,选择1:0.5~1:0.8的对称梯形断面 进行结构稳定和应力分析。

计算基本参数

堤内最高运行水位: 329.00m

堤内最低运行水位: 321.50 m

堤外(库区)正常蓄水位: 335.12 m

地基承载力特征值为0.4MPa

基础底面与卵石层之间的摩擦系数取0.5

渗透压力折减系数: 0.50

坝体:设计容重γ_c取 23.0kN/m³; 抗压强度标准值取4MPa

地震基本烈度为Ⅷ度,动峰加速度取0.1g

计算工况

正常蓄水

上游水

位:

335.12m

下游水

位:无

水

校核洪水

上游水

位:

335.12m

下游水

位:

329.00

施工完建

上下游 均无水 地震工况

上游水

位:

335.12m

下游水

位:无

水

计算方法与控制标准

防洪堤稳定应力计算按照抗滑稳定计算采用抗剪强度计算公式:

$$Kc = \frac{f \sum W}{\sum P}$$

$$\sigma_{y} = \frac{\sum G}{A} \pm \frac{\sum M}{\sum W}$$

抗滑稳定安全控制标准:正常运用条件下不小于1.20,非常运用条件下不小于1.05;防洪堤各计算工况下基底的最大压应力不小于地基的允许承载力,且基底应力的最大值与最小值之比的允许值,正常运用条件下小于2.0,非常运用条件下小于2.50。

首先坝高取8m、10m、12m、14m,对称梯形断面,上下游坝坡坡比1:0.8、1:0.7、1:0.6、1:0.5进行稳定应力分析,计算结果见表一。

E:\2014大坝年会\表一. doc

从表一计算成果可见,当上下游坝坡坡比均为 1:0.5时,各工况坝体的抗滑稳定能满足规范要求, 且坝体垂直应力小于基础承载力;但当坝高超过 10m后地震工况坝体基底应力最大值与最小值之比 大于2.5,不满足要求。当上下游坝坡均大于1:0.6 时,各工况的坝体抗滑稳定满足规范要求,基底应 力小于基础承载力且最大基底应力与最小应力比值 满足规范要求。

基于以上计算结果,进一步研究上游坡比为1: 0.5,下游剖比为1: 0.6、1: 0.7、1: 0.8的坝体断面的稳定应力情况,计算成果详见表二。 <u>E:\2014大坝年会\表二.doc</u> 从表二计算成果可见上游坡比1:0.5,下游坡比为1:0.8~0.6各坝体断面抗滑稳定及基底应力情况均能满足要求。

比较分析表一和表二抗滑稳定安全系数及应力成果,上游坝坡坡比为1:0.5、下游坝坡坡比为1:0.8与上游坝坡坡比为1:0.5、下游坝坡坡比为1:0.7两个坝体断面的各工况下基底应力分布较为均匀,安全系数亦相对较高。根据材料力学法的计算成果,上游坝坡坡比为1:0.5、下游坝坡坡比为1:0.7的坝体断面。

在材料力学法分析的基础上,采用有限元法建立上游坡比为1:0.5-1: 0.6、下游坡比为1:0.65-1:0.7,共6种坡比组合的模型进行堤体的应力和变形计算分析,建立了防洪堤的有限元计算模型,如图2-1。不同组合的堤体体型详见表三和图2-2。

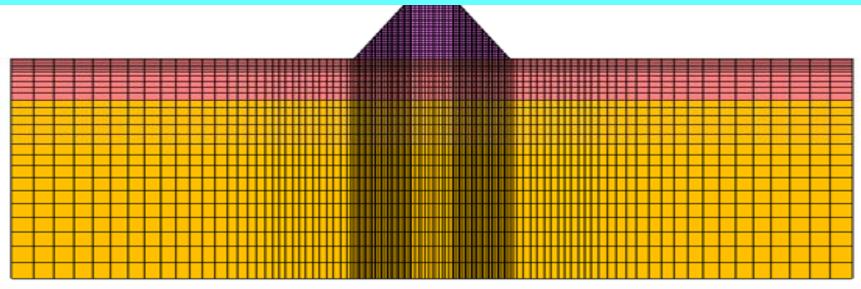


图 2-1 防洪堤有限元模型(上下游坡比1:0.6)

表三6种不同的堤体体型

编号	顶宽 (m)	上游坡 比1:m	下游坡 比1:n	综合坡 比m+n	底宽 (m)	断面积 (m²)
1	6	1:0.5	1:0.65	1.15	22.22	198.92
2	6	1:0.5	1:0.7	1.2	22.92	203.89
3	6	1:0.55	1:0.65	1.2	22.92	203.89
4	6	1:0.55	1:0.7	1.25	23.63	208.86
5	6	1:0.6	1:0.6	1.2	22.92	203.89
6	6	1:0.4	1:0.7	1.1	21.51	193.95

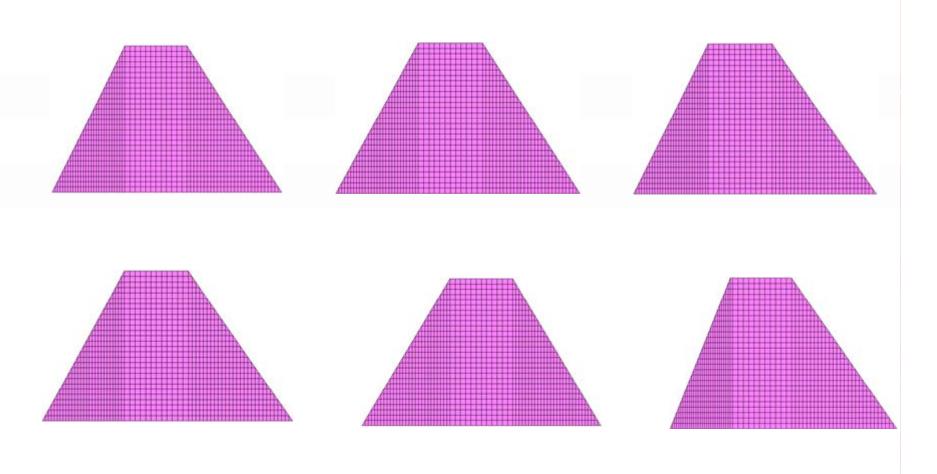


图 2-2 6种堤体有限元模型

对6个体型的防洪堤在不同工况下的应 力变形采用非线性有限元方法进行计算分 析, 计算中考虑堤体施工过程的仿真。 计算表明,除坝踵、坝趾应力集中区外, 各种体型下, 建基面应力分布均较均匀。 在离开坝踵、坝趾1m远后,坝体竖向正应 力值较小,为200kPa左右,6种体型下,堤 体建基面竖向正应力随施工过程的分布图 如图 2-3所示。

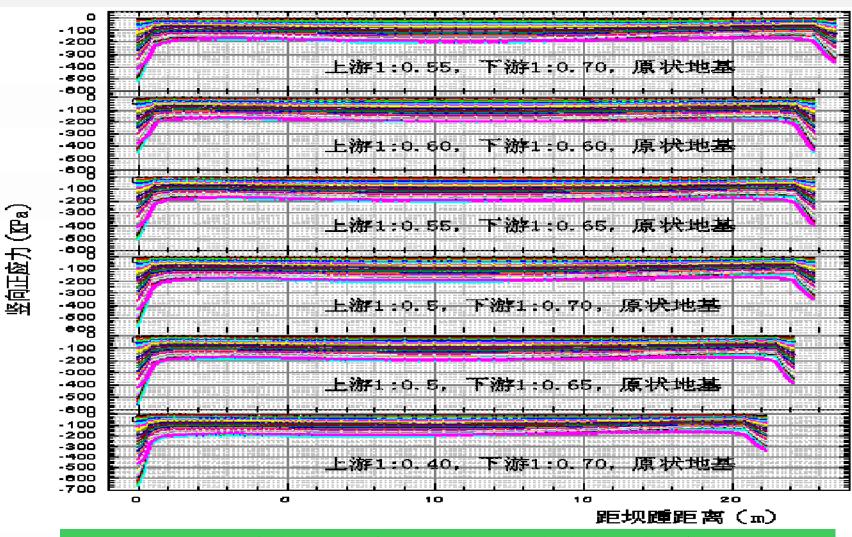


图 2-3 六种体型下,建基面竖向正应力随施工过程变化图

当上游坡陡于下游坡时,随着堤体施工的填筑上升,坝踵竖向正应力的增幅大于坝趾处的竖向正应力。

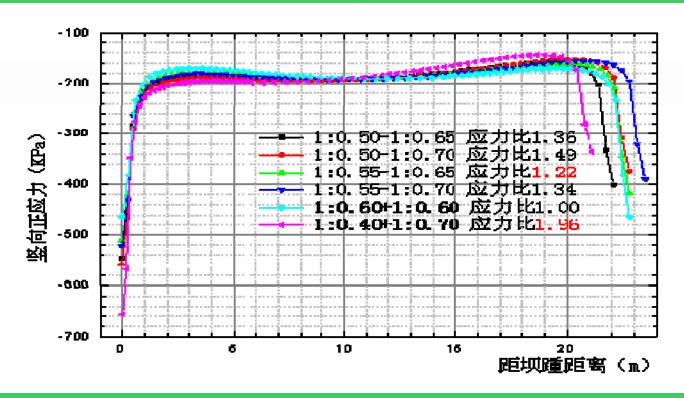


图2-4不同体型下完建工况建基面竖向正应力分布

随着防洪堤挡水工作,坝踵、坝趾处的 应力相应调整,但由于防洪堤高度较低,由 蓄水造成的应力调整幅度较小。由图 2-5可 见,不同体型下,建基面内部应力变化不大, 均在200KPa左右浮动。由于存在应力集中, 坝踵处的竖向正应力均超过400KPa,超过 400KPa的区域不超过1m,坝趾区也存在相 类似的应力分布。

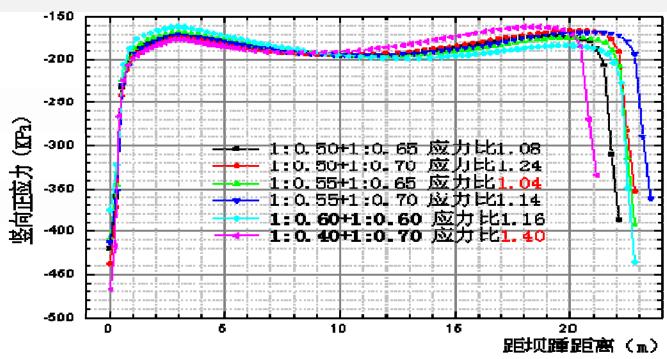
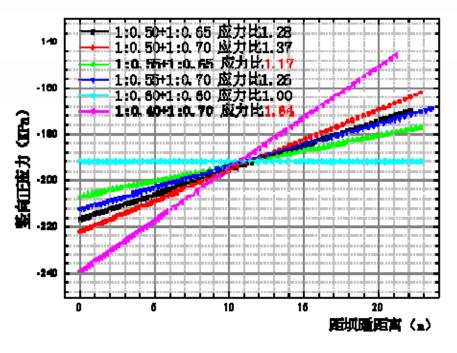




图 2-5 不同体型下正常蓄水工况建基面竖向正应力分布

结果表明,上游1:0.4、下游1:0.7时,坝踵、坝趾处的竖向正应力差别最大,为1.40。上游1:0.55下游1:0.65的体型,在完建和正常运行工况下坝踵、坝趾处的竖向正应力比最小。

由于有限元方法计算时,坝踵、坝趾处存在应力集中,对应力计算结果进行了有限元等效应力处理。

完建工况下有限元等效应力计算结果

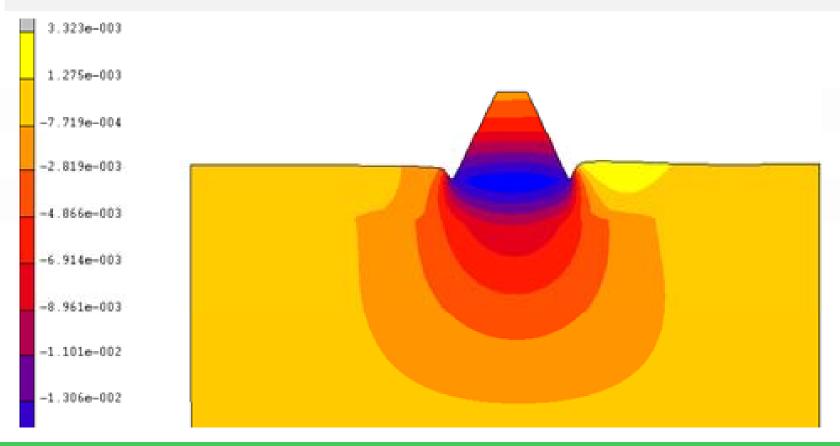
正常蓄水工况下有限元等效应力计算结果

根据有限元等效应力计算结果,完建工况下, 采用上游1:0.4,下游1:0.7体型时,基底最大压应力 最大,最大值接近240kPa,基底最大最小应力比值为 1.64, 采用上下游等坡比(1:0.6)时, 基地最大压应 力最小,为192kPa,基底最大最小应力比值为1.0, 均小于2.5。正常运行工况下,采用上游1:0.4,下游 1:0.7体型时,基底最大压应力最大,最大值约为 212kPa, 基底最大最小应力比值为1.21, 采用上游 1:0.55,下游1:0.65体型时,基底最大最小应力比值 最小,为1.01。

对不同断面体型的抗滑稳定进行计算分析,计算结果详见表四。

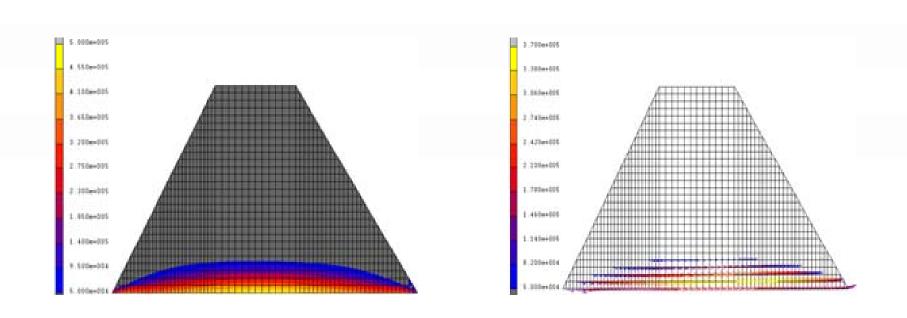
4户 旦	顶宽	上游坡比	下游坡比	抗滑稳定安全系数		
编号	(m)	1:m	1:n	正常工况	地震工况	
1	6	1:0.5	1:0.65	2. 35	1. 69	
2	6	1:0.5	1:0.7	2. 42	1. 72	
3	6	1:0.55	1:0.65	2. 20	1. 59	
4	6	1:0.55	1:0.7	2. 43	1. 73	
5	6	1:0.6	1:0.6	2. 22	1. 60	
6	6	1:0.4	1:0.7	2. 04	1. 50	

计算表明,各种体型下,均满足规范要求的正常运用条件下不小于1.20,非常运用条件下不小于1.05的规定。


通过有限元法进行优化分析,建议采用上游坝坡坡比为1:0.55、下游坝坡坡比为1:0.65的坝体断面。

对建于岩基和砂卵石地基的胶凝砂砾石堤的变 形特性进行对比分析。相比于基岩上的胶凝砂砾石堤, 原状卵石层上的胶凝砂砾石堤变形分布具有以下不同 特点。修建在均匀、坚硬的岩石上的胶凝砂砾石堤, 变形较均匀,基岩变形梯度较小。而修建于砂卵石地 基上的胶凝砂砾石堤,由于砂卵石材料变形模量较低, 堤体沉降较大,基础变形主要集中在较浅的表层内, 变形梯度较大。

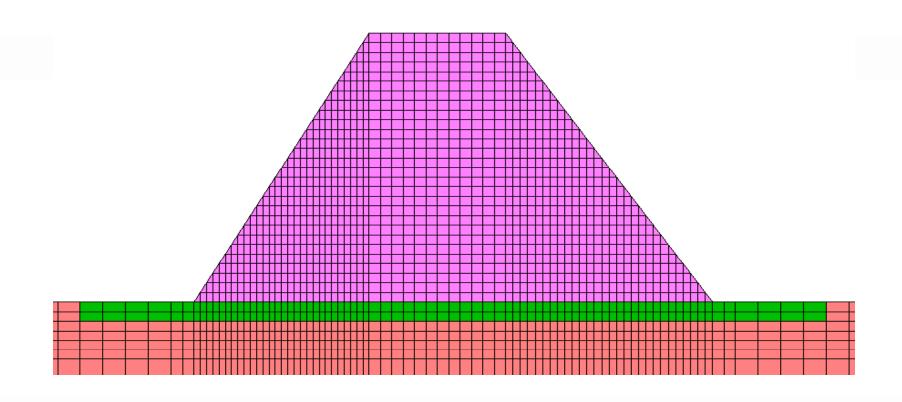
正常运行工况下,不同体型堤体最大变形与沉降量


<i>4</i> È.	顶宽	上分针中	工资种	岭人址	最大沉降量(mm)	
编号	(m)	上游坡 比1:m	下游坡 比1:n	综合坡 比m+n	完建 工况	正常蓄水 工况
1	6	1:0.5	1:0.65	1.15	32. 71	29. 96
2	6	1:0.5	1:0.7	1.2	33. 08	29. 52
3	6	1:0.55	1:0.65	1.2	32. 28	30. 38
4	6	1:0.55	1:0.7	1.25	32. 55	29. 77
5	6	1:0.6	1:0.6	1.2	31. 99	31. 64
6	6	1:0.4	1:0.7	1.1	34. 34	28. 75

上下游坡比均为1:0.6基岩弹性模量200MPa模型竖向位移分布 (单位: m, 放大200倍)

由于卵石层弹性模量较低而泊松比较大,除了造成堤体沉降量较大外,还在堤体建基面底部出现顺河向的拉应力.

	顶宽 (m)	上游坡比 1:m	下游坡比 1:n	综合坡比 m+n	完建工况 (k Pa	正常运行工况 (kPa)
1	6	1:0.5	1:0.65	1.15	578.8	489.6
2	6	1:0.5	1:0.7	1.2	599. 9	509. 2
3	6	1:0.55	1:0.65	1.2	605. 0	514.6
4	6	1:0.55	1:0.7	1.25	627. 1	534. 0
5	6	1:0.6	1:0.6	1.2	606.8	516.9
6	6	1:0.4	1:0.7	1.1	542. 2	456. 2


完建工况下,**上游1:0.55下游1:0.65**体型时,建基面拉应力分布区

由于胶凝砂砾石本体强度较低,工程设计 一般应使其在受压状态下工作,沉降分析 堤体底部出现顺河向的主拉应力,拉应力 值约为0.6kPa。由于砂卵石基础的变形主要 集中在浅表层,变形梯度较大,考虑对砂 卵石层采用富浆胶凝砂砾石置换的地基处 理方案。采用上游1:0.55, 下游1:0.65体型 进行,建立有限元计算模型,计算方案如 表 3-3所示,有限元模型如图 3-3所示。

表 3-3 地基置换研究方案

方案编号	富浆胶凝砂砾石	转换厚度	置换范围
1		1.0	5. 0
2	C ₁₈₀ 10 E=18GPa	1.5	5. 0
3	L 1001 a	2.0	5.0
4		1.0	5.0
5	C ₁₈₀ 15 E=22GPa	1.5	5.0
6	1. 2.2 01 0	2.0	5.0

图 3-3 1、3地基置换方案局部有限元模型

6种处理方案下堤体最大沉降变形量如表 3-4所示。

方案编号	富浆胶凝砂砾石	完建工况	正常蓄水工况
1		13. 1	11.8
2	C ₁₈₀ 10 E=18GPa	12. 3	11. 0
3	L Toor a	11.6	10. 4
4		13. 0	11. 7
5	$\begin{array}{c} C_{180}15 \\ E=22\text{GPa} \end{array}$	12. 2	10. 9
6	Ε 2201 α	11.5	10. 3

不同工况下堤体完建和正常蓄水工况下的堤体最大主应力如图 3-4-图 ~3-15所示。

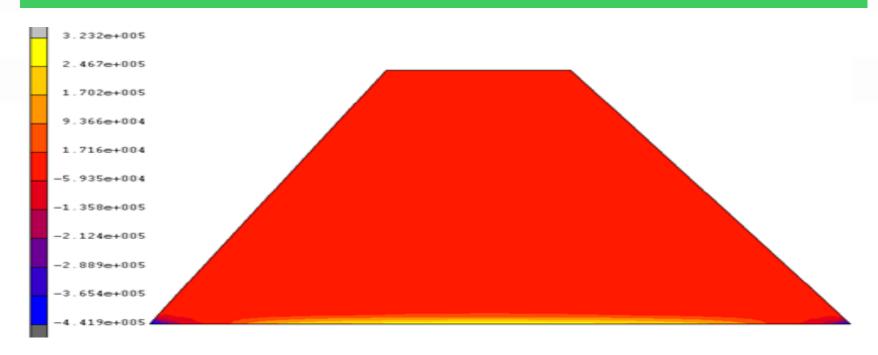


图 3-4 方案1完建工况下堤体最大主应力分布(Pa)

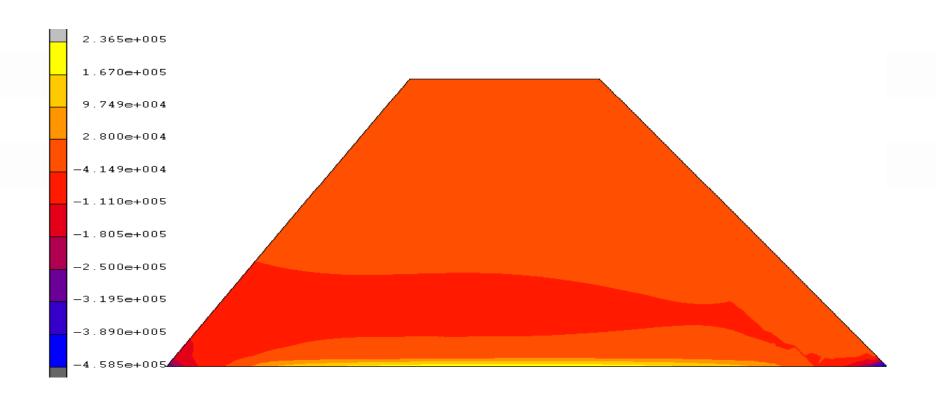


图 3-5 方案1正常蓄水工况下堤体最大主应力分布(Pa)

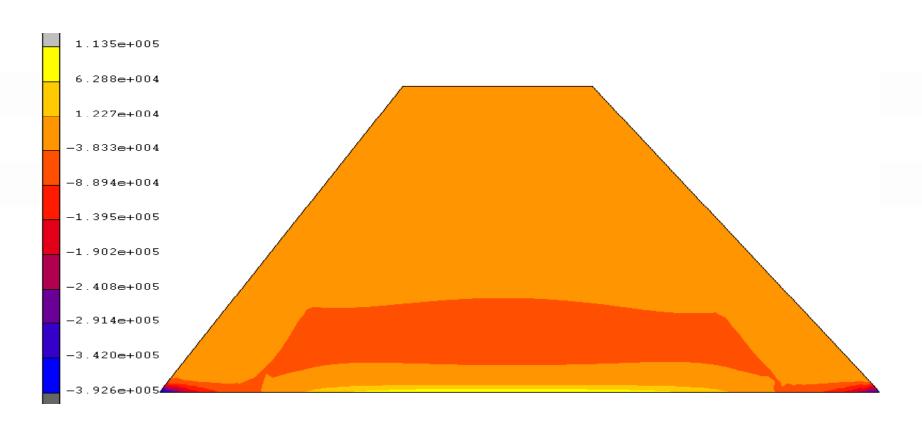


图 3-6 方案2完建工况下堤体最大主应力分布(Pa)

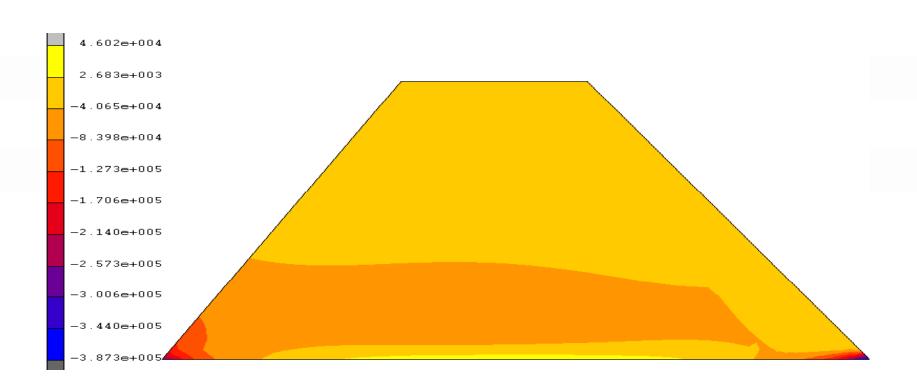


图 3-7 方案2正常蓄水工况下堤体最大主应力分布(Pa)

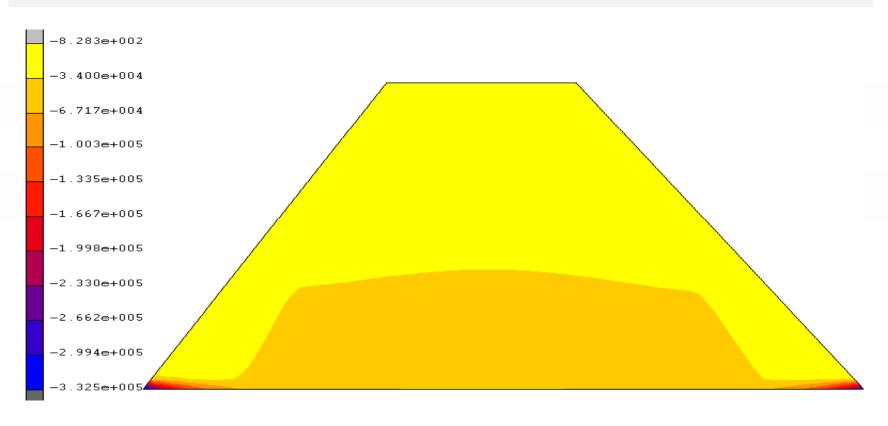


图 3-8 方案3完建工况下堤体最大主应力分布(Pa)

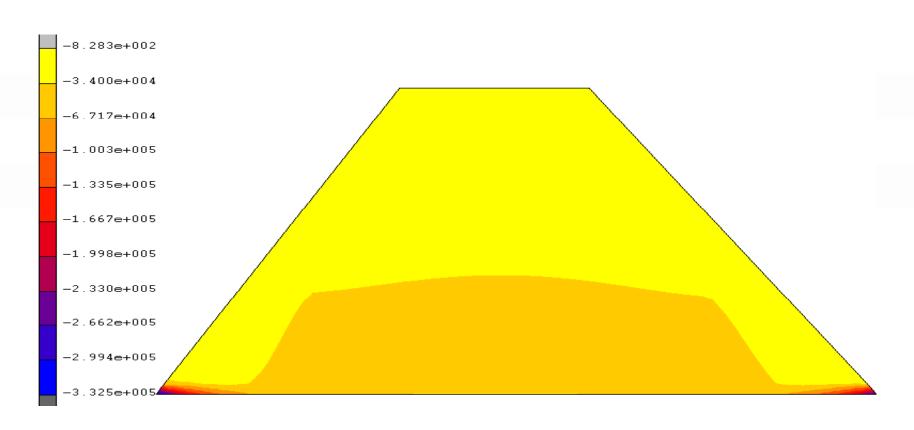


图 3-9 方案3正常蓄水工况下堤体最大主应力分布(Pa)

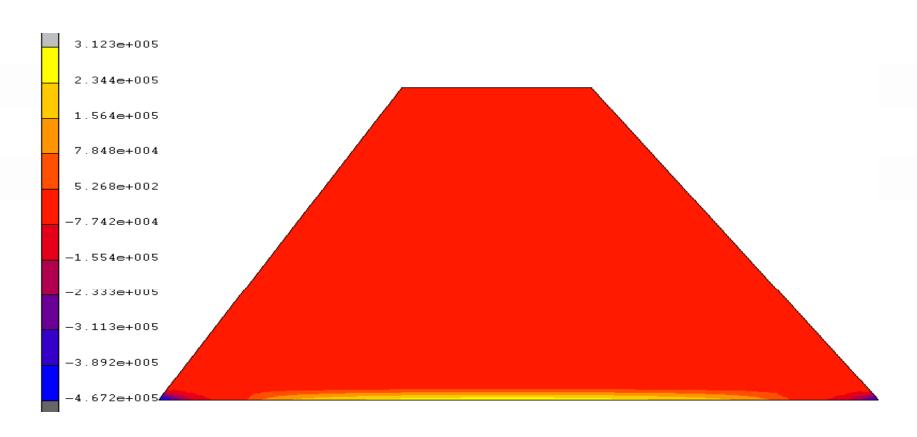


图 3-10 方案4完建工况下堤体最大主应力分布(Pa)

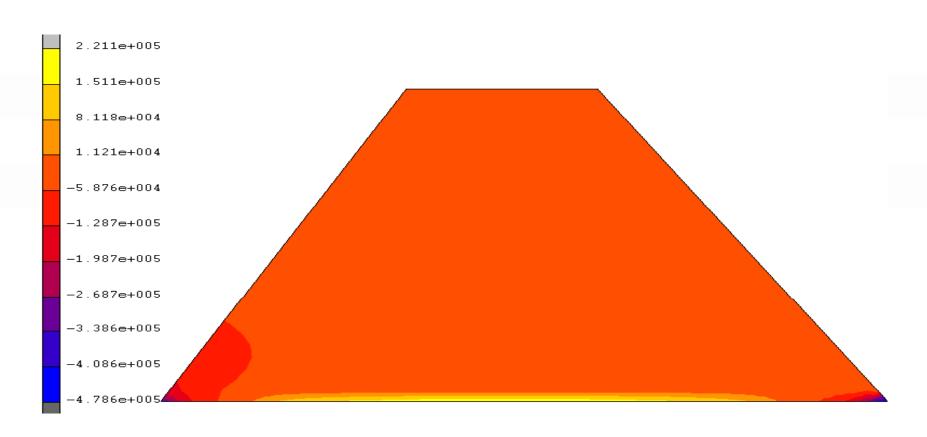


图 3-11 方案4正常蓄水工况下堤体最大主应力分布(Pa)

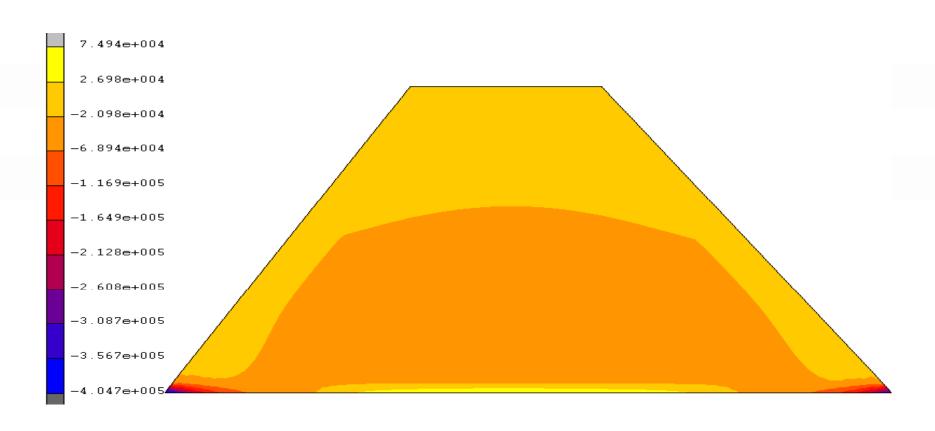


图 3-12 方案5完建工况下堤体最大主应力分布(Pa)

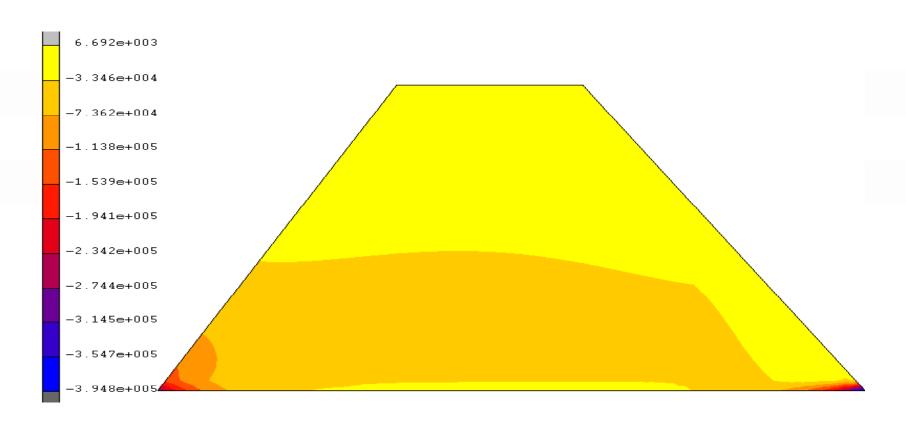


图 3-13 方案5正常蓄水工况下堤体最大主应力分布(Pa)

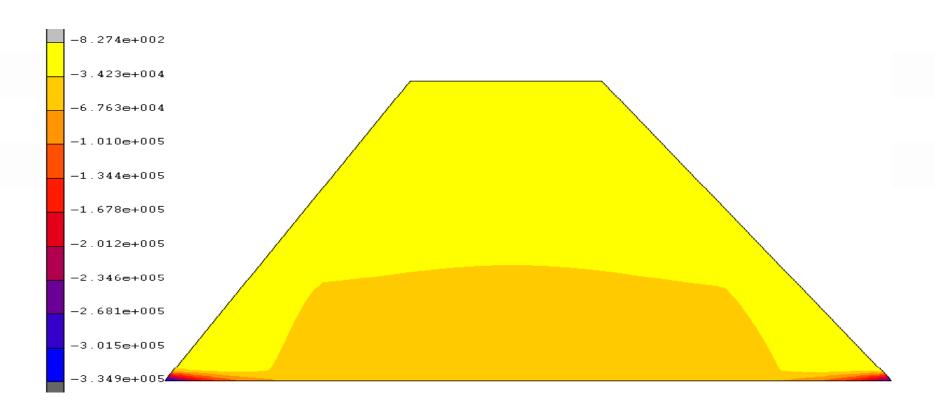


图 3-14 方案6完建工况下堤体最大主应力分布(Pa)

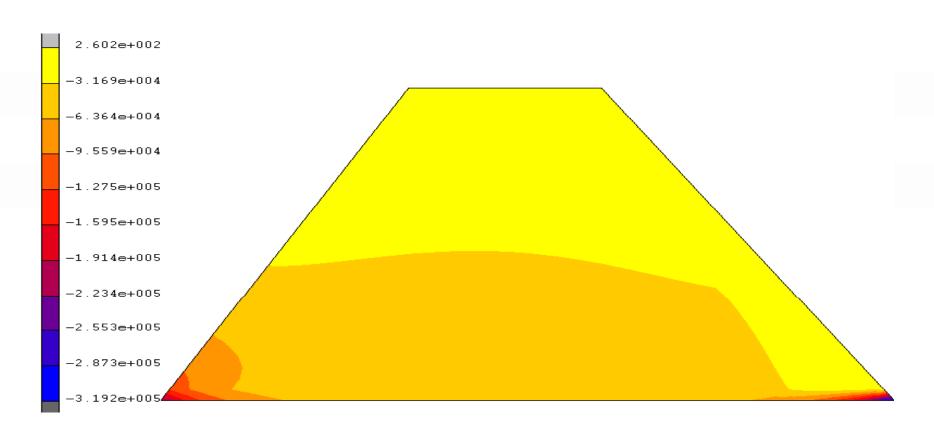
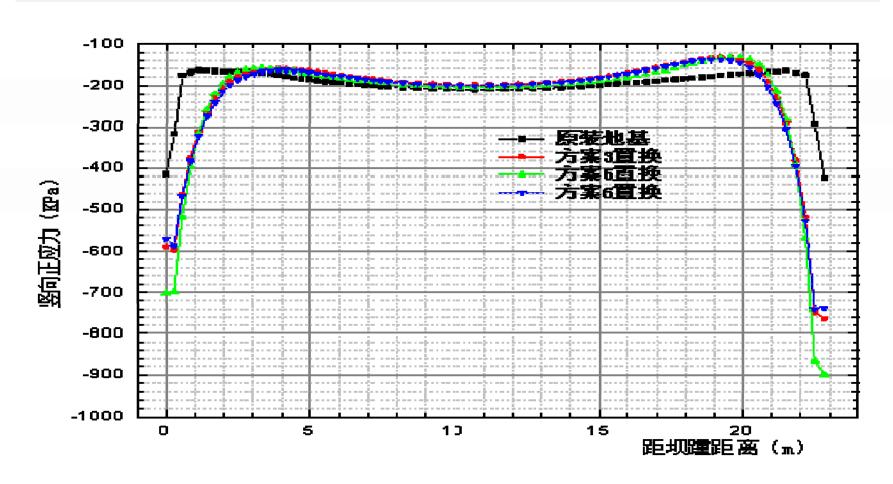
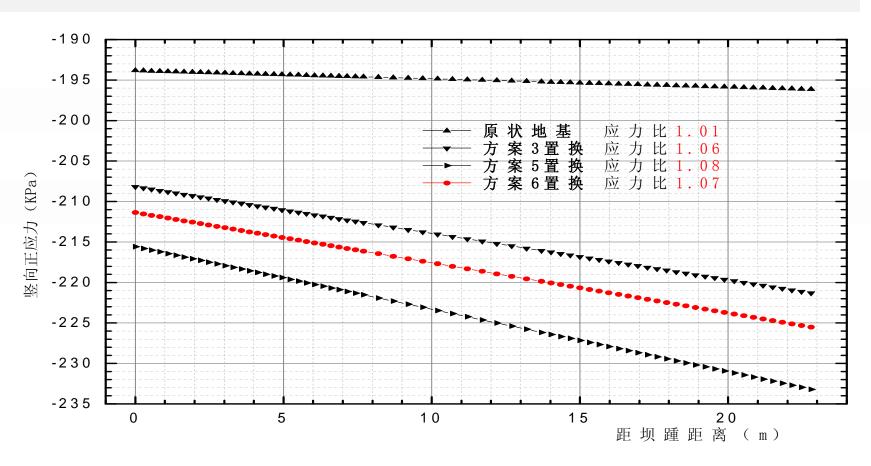
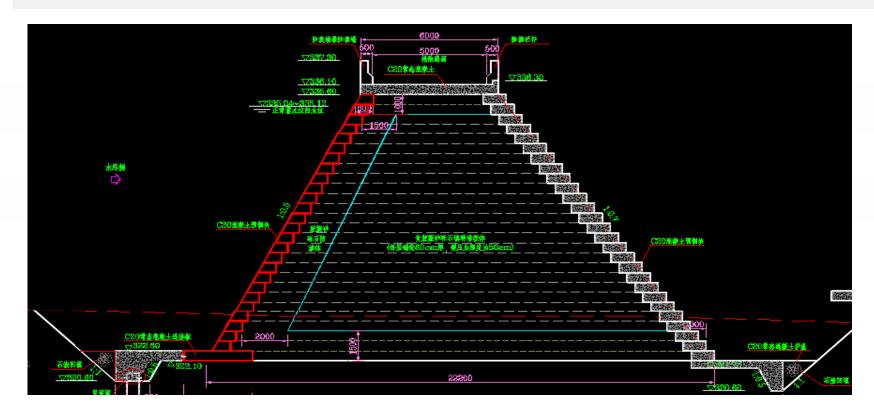
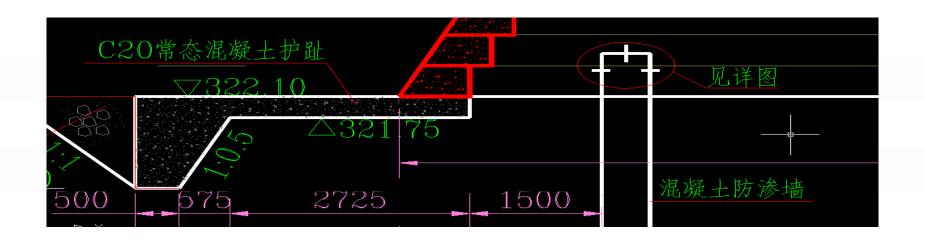



图 3-15 方案6正常蓄水工况下堤体最大主应力分布(Pa)

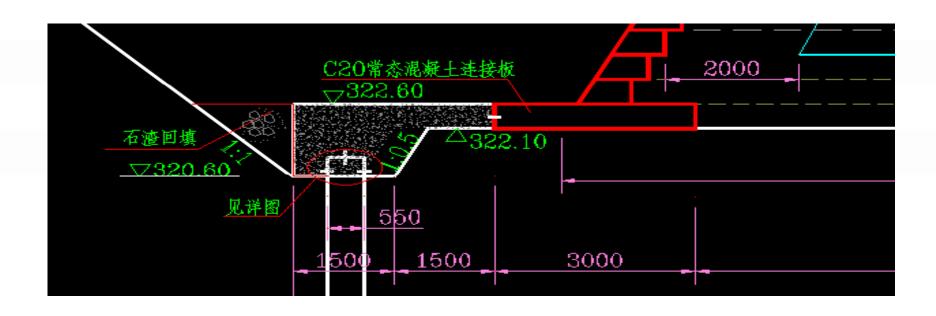
根据计算结果,对于方案3、方案5和方案6, 堤体底部基本无主拉应力。但是对基础砂 卵石进行局部置换,由于基础刚度增大, 堤体的坝踵和坝趾部位将出现较大压应力, 有限元方法和有限元等效应力方法计算所 得的建基面竖向正应力分布及其与原状地 基的对比如图 3-16和图 3-17所示。根据有 限元等效应力结果,三个方案的竖向压应 力均小于240kPa,最大最小应力比为1.06-1.08,均能满足要求。

3-16 原状地基与不同置换方案建基面竖 向正应力对比-有限元结果


图 3-17 原状地基与不同置换方案建基面竖向正应力对比-有限元等效应力结果

4 防渗设计


本工程设计的胶凝砂砾石坝基础为砂卵砾石层,防渗设计主要分基础防渗和坝体防渗两部分。

4.1 基础防渗

基础采用混凝土防渗墙做基础防渗。最先考虑将防渗墙放置在坝体内,靠上游侧,但在有限元法进行基础应力分析时发现,由于混凝土防渗墙弹性模量比坝体、基础大很多(坝体变形模量为10GPa,基础变形模量为0.04GPa,防渗墙弹性模量为25.5GPa),防渗墙对坝体有顶托作用,这样上游坝踵的应力较规范算法小很多,甚至出现拉应力,造成坝趾坝踵应力比相差很大。

4.1 基础防渗

为适应坝体和坝基可能产生变形的情况,调整防渗墙布置,采用防渗铺盖的形式连接防渗墙与坝体,使坝体的沉降变形不受防渗墙的顶托影响。

胶凝砂砾石具备一定的抗渗能力,对于围堰等临时工程,一般直接采用胶凝砂砾石本体防渗。对于永久工程,由于胶凝砂砾石的胶凝材料用量较低,长期耐久性指标相对较低,为了保障长期运行安全,大坝上下游面水下部分需设置防渗层,坝面应设保护层,保护层设置与防渗层结合考虑。

在胶凝砂砾石坝的坝体结构设计中,一般采用功能分开的原则,即坝体胶凝砂砾石主要满足大坝应力与稳定的要求,而不必考虑材料的抗渗能力和耐久性;在坝体胶凝砂砾石外部设置保护和防渗层,来满足大坝的防渗和耐久性要求,两者联合实现坝体稳定和挡水功能。

本工程设计中采用的坝体防渗方式是在 迎水面设置2m厚富胶凝砂砾石,防渗保护层 的混凝土要求达到C9015F50W6。对防渗保护层 富浆胶凝砂砾石配合比和强度委托北京水科 院进行了试验研究,根据本工程料场取样砂 砾石料的砂率情况,控制保护层富浆胶凝砂 砾石的胶凝材料用量在151~203kg/m³,粉煤 灰掺量为40%,90d龄期的抗渗和抗冻性能见 表4-2和表4-3, 抗渗等级大于W8, 抗冻等级 大于F100。

编号	砂率 %	减水 剂%	引气	用水 量 kg/m³	水胶比	胶料 用量 kg/m³	水泥 kg/m³	粉煤 灰	砂砾石	坍落 度cm	含气量%	抗压强度MPa	
								kg/m ³				28d	90d
HX-1	28. 1	0.8	0.03	125	0.60	208	104	104	2049	0.8	3.6	13.4	25.0
HX-2		1. 1	0.03	125	0.60	208	104	104	2049	0.9	5. 4	10. 1	19. 2
НХ-3		0.8	0.03	140	0.60	234	117	117	1979	3. 7	9.5	11.7	21.3
HX-4		0.8	0.03	125	0.69	180	90	90	2082	2.5	7.6	10.0	20. 2
НХ-5		0.8	0.015	140	0.78	180	90	90	2041	15.0	10.0	7. 9	16. 1
НХ-6		0.8	0.008	132	0.66	200	100	100	2040	4. 1	4.0	12.9	25.8
HX-7		0.8	0.008	135	0.75	180	90	90	2055	4.3	5. 1	10.4	23.0
HX-8		0.8	0.008	132	0.65	203	122	81	2157	7.3	5.3	15.6	25. 7
НС-1	18. 0	0.8	0.006	96	0.60	160	80	80	2187	2.0	3. 4	16.2	30.0
HC-2		0.8	0.006	108	0.60	180	90	90	2131	9.6	3.6	17. 2	32. 3
HC-3		0.8	0.006	103	0.57	180	90	90	2154	3.0	3.9	17.7	32.6
HC-4		0.8	0.006	98	0.65	151	91	60	2281	5.3	4. 1	19.6	28.9

表4-1 防渗保护层富浆胶凝砂砾石配合比及强度试验结果

表4-2 推荐保护层富浆胶凝砂砾石抗渗性能(90d龄期)

编号	砂率 (%)	胶材用量 (kg/m3)	抗渗等级	渗水高度 (cm)
НХ-8	28. 1	203	>W8	2. 0
НС-4	18. 0	151	>W8	1. 9

5 结束语

胶凝砂砾石坝是一种胶结强度较低的坝, 主要靠自身重力维持稳定,目前我国对胶凝 砂砾石筑坝技术的研究尚处在较初级阶段, 结合工程实际通过创新研究,进一步完善设 计理论,促进胶凝砂砾石筑坝技术发展,突 出其节约工程投资、施工快速、环境适应性 好的优点,其应用前景是广泛的。

CCJC 中国能建广西院

谢谢!

地址:广西壮族自治区南宁市建政路10号 电话:0771-5699766 传真:0771-5699754