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Accurately modeling rainfall–runoff (R–R) transform remains a challenging task despite that a wide range
of modeling techniques, either knowledge-driven or data-driven, have been developed in the past several
decades. Amongst data-driven models, artificial neural network (ANN)-based R–R models have received
great attentions in hydrology community owing to their capability to reproduce the highly nonlinear nat-
ure of the relationship between hydrological variables. However, a lagged prediction effect often appears
in the ANN modeling process. This paper attempts to eliminate the lag effect from two aspects: modular
artificial neural network (MANN) and data preprocessing by singular spectrum analysis (SSA). Two
watersheds from China are explored with daily collected data. Results show that MANN does not exhibit
significant advantages over ANN. However, it is demonstrated that SSA can considerably improve the
performance of prediction model and eliminate the lag effect. Moreover, ANN or MANN with antecedent
runoff only as model input is also developed and compared with the ANN (or MANN) R–R model. At all
three prediction horizons, the latter outperforms the former regardless of being coupled with/without
SSA. It is recommended from the present study that the ANN R–R model coupled with SSA is more
promisings.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction ANNs in hydrology (ASCE, 2000), Maier and Dandy (2000) and
The rainfall–runoff relationship is one of the most complex
hydrological phenomena to comprehend, owing to the tremendous
spatial and temporal variability of watershed characteristics and
precipitation patterns, and to the number of variables involved in
the modeling of the physical process (Kumar et al., 2005). Since
the rational method for peak of discharge was developed by
Mulvany (1850), numerous hydrologic models have been proposed.
Based on the description of the governing processes, these models
can be classified as either physically-based (knowledge-driven) or
system theoretic (data-driven). Physically-based models involve a
detailed interaction of various physical processes controlling the
hydrologic behavior of a system. However, system theoretic models
are instead based primarily on observations (measured data) and
seek to characterize the system response from those data using
transfer functions. As an example of system theoretic models,
ANN-based R–R models have received great attentions in the last
two decades due to their capability to reproduce the highly nonlin-
ear nature of the relationship between hydrological variables.

The potential of ANN in hydrological modeling was reviewed,
for example, by the ASCE Task Committee on Application of the
ll rights reserved.
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Dawson and Wilby (2001). Most applications for river flow predic-
tion consist in modeling the R–R transformation, providing input of
past flows and precipitation observations. They have proved that
ANNs are able to outperform traditional statistical R–R modeling
(Hsu et al., 1995; Shamseldin, 1997; Sajikumar and Thandavesw-
ara, 1999; Tokar and Johnson, 1999; Coulibaly et al., 2000; Sudheer
et al., 2002) and to offer promising alternatives for conceptual R–R
models (Hsu et al., 1995; Tokar and Johnson, 1999; Coulibaly et al.,
2000; Dibike and Solomatine, 2001; Birikundavyi et al., 2002; de
Vos and Rientjes, 2005; Toth and Brath, 2007). Hsu et al. (1995)
showed that the ANN model provided a better representation of
the rainfall–runoff relationships than the ARMAX time series mod-
el or the conceptual SAC-SMA (Sacramento soil moisture account-
ing) models. Coulibaly et al. (2000) used the early stopping
method, to train multi-layer perceptrons (MLP) for real-time reser-
voir inflow prediction. Results show that MLP can provide better
model performance compared to benchmarks from the classic
autoregressive model coupled with a Kalman filter (ARMAX-KF)
and a conceptual model (PREVIS). Birikundavyi et al. (2002) inves-
tigated the ANN models for daily streamflow prediction and also
showed that ANNs outperformed PREVIS and ARMAX-KF. Toth
and Brath (2007) investigated the impact of the amount of the
training data on model performance using ANN and a conceptual
model (ADM). ANN was proved to be an excellent tool for the
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R–R simulation of continuous periods, provided that an extensive
set of hydro-meteorological data was available for calibration pur-
poses. However, compared with ANN, ADM may allow a significant
prediction improvement when focusing on the prediction of flood
events and especially in case of a limited availability of the training
data.

Improvement of model performance is a long-term topic of
interest by researchers when ANN is used to simulate the R–R rela-
tionship. It is recognized that the ANN model is data dependent
and has a flexible structure, which leaves huge room for the
improvement of ANN in the context of R–R prediction. The ANN
model is highly sensitive to the studied data, which means that
the structure of ANN is totally different with the change of the
training data. Besides, the training algorithms, model configura-
tion, and data preprocessing techniques also impose wide influ-
ences on the model performance. Hsu et al. (1995) found that
the ANN models underestimated low flows and overestimated
medium flows when they were used to simulate the R–R relation-
ship. They further mentioned that this might have been due to the
models not being able to capture the nonlinearity in the rainfall–
runoff process and suggested that there is still room for improve-
ment in applying different algorithms, such as stochastic global
optimization and genetic algorithms, to reach near global solu-
tions, and achieve better model performances. Hence, a more effec-
tive and efficient ANN R–R model was developed by Jain and
Srinivasulu (2004) where ANN was trained by using real-coded
GAs. Results showed that the proposed approach could signifi-
cantly improve the estimation accuracy of the low-magnitude
flows.

On the other hand, Zhang and Govindaraju (2000) recently
pointed out that the rainfall–runoff mapping in a watershed can
be fragmented or discontinuous with significant variations over
the input space because of the functional relationships between
rainfall and runoff being quite different for low, medium, and high
magnitudes of streamflow. They found a single ANN to be rigid in
nature and not suitable in capturing a fragmented input–output
mapping. In order to overcome this problem they designed a mod-
ular neural network (MANN) consisting of three different ANN
models for low-, medium-, and high-magnitude flows. Inspired
by this study, many modular (or hybrid) models have been devel-
oped for R–R simulation. Solomatine and Xue (2004) applied an
approach where separate ANN and M5 model-tree basin models
were built for various hydrological regimes (identified on the basis
of hydrological domain knowledge). Jain and Srinivasulu (2006)
also applied decomposition of the flow hydrograph by a certain
threshold value and then built separate ANNs for low and high flow
regimes. Corzo and Solomatine (2007) investigated three modular
ANNs for simulating two decomposed flow regimes, base flow and
exceeding flow, depending on three different partitioning schemes:
automatic classification based on clustering, temporal segmenta-
tion of the hydrograph based on an adapted baseflow separation
technique, and an optimized baseflow separation filter. The modu-
lar models were shown to be more accurate than the global ANN
model. The best modular model was the one using the optimized
baseflow filtering equation. Evidently, all studies demonstrated
that modular models generally made higher accuracy of prediction
than global models built to represent all possible regimes of the
modeled system. Hence, MANN continues to be examined in the
present study.

When a rainfall or runoff (streamflow or discharge) time series
is viewed as a combination of quasi-periodic signals contaminated
by noises to some extent, a cleaner time series can be filtered by
appropriate data preprocessing techniques such as singular spec-
trum analysis (SSA). Obviously, the predictability of a system can
be improved by predicting the important oscillations (periodic
components) taken from the system. For the purpose of cleaning
rainfall or runoff series, many data preprocessing techniques,
including Moving average (MA), Principal component analysis
(PCA), wavelet analysis (WA), and singular spectrum analysis
(SSA), have been employed in hydrology field by researchers
(Sivapragasam et al., 2001; Marques et al., 2006; Hu et al., 2007;
Partal and Kis�i, 2007; Sivapragasam et al., 2007; Wu et al., 2010).
Hu et al. (2007) employed PCA as an input data preprocessing tool
to improve the prediction accuracy of the rainfall–runoff neural
network models. The use of WA to improve rainfall forecasting
was conducted by Partal and Kis�i (2007). Their results indicated
that WA was promising. Wu et al. (2010) compared MA, PCA and
SSA as data preprocessing methods using ANN for rainfall predic-
tions and found that SSA is preferred. SSA has also been recognized
as an efficient preprocessing algorithm to avoid the effect of dis-
continuous or intermittent signals, coupled with neural networks
(or similar approaches) for time series forecasting (Lisi et al.,
1995; Sivapragasam et al., 2001; Baratta et al., 2003). For example,
Lisi et al. (1995) applied SSA to extract the significant components
in their study on southern oscillation index time series and used
ANN for prediction. They reconstructed the original series by sum-
ming up the first ‘‘p’’ significant components. Sivapragasam et al.
(2001) proposed a hybrid model of support vector machine
(SVM) and SSA for rainfall and runoff predictions. The hybrid mod-
el resulted in a considerable improvement in the model perfor-
mance in comparison with the original SVM model. However,
few studies employ SSA to filter rainfall and streamflow so as to
generate cleaner inputs for an R–R model. Therefore, one of main
purposes in this study is to develop an ANN (or MANN) R–R model
coupled with SSA. To evaluate its performance, a linear regression
(LR) R–R model and an ANN-based time series model (using ante-
cedent runoff as only input variables) are developed as bench-
marks. To ensure wider applications of conclusions, two river
basins from China, Wuxi and Luishui, are explored.

This paper is structured in the following manner. Followed by
Introduction, the study areas are described and modeling methods
are presented. Section 3 presents their applications to two water-
sheds. The optimal model is identified and the implementation of
SSA is described. In Section 4, main results are shown along with
necessary discussions. Section 5 summarizes main conclusions in
this study.
2. Methodology

2.1. Study area and data

Two river basins from China, Daning and Lushui, are considered
as case studies.

The Daning River, a first-order tributary of the Yangtze River, is
located in the northeast of Chongqing city. The collected daily data
includes rainfall, runoff (or streamflow), and evaporation. The data
period spans 20 years from January 1, 1988 to December 31, 2007.
The daily rainfall data are measured at six rain gauges located at
the upstream of the basin. The upstream part is controlled by
‘‘Wuxi’’ hydrology station, with a drainage area of around
2000 km2. The data of runoff and evaporation are gathered at
‘‘Wuxi’’ station (hereafter the studied area is denoted by ‘‘Wuxi’’).
The Lushui River, located in the southeast of Hubei province, is also
a first-order tributary of the Yangtze River. The collected daily data
includes runoff and rainfall. The data period covers a 4-year long
duration (January 1, 2004–December 31, 2007). The runoff data
from Lushui River are collected at ‘‘Chongyang’’ hydrology station.
The daily rainfall data are measured at eight rain gauges located at
the drainage area controlled by Chongyang hydrology station. The
drainage area controlled by the station is around 1700 km2 (here-
after the studied area is referred to as ‘‘Chongyang’’). Fig. 1 demon-
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Fig. 1. Daily rainfall–runoff time series: (a) Wuxi and (b) Chongyang.
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strates rainfall and runoff (or streamflow) time series in two ba-
sins. The data represents various types of hydrological conditions,
and flow range from low to very high.

Each prediction model is a lumped type, namely, the watershed
is considered as a whole, the input rainfall being the mean areal
precipitation over the watershed by Thiessen polygon method
and the output being the runoff measured at the control hydrology
station. The entire input–output dataset in each watershed is par-
titioned into three data subsets as training set, cross-validation set
and testing set: the first half of the entire data as training set and
the first half of the remaining data as cross-validation set and the
other half as testing set. The training set serves the model training
and the testing set is used to evaluate the performances of models.
The cross-validation set has dual functions: one is to implement an
early stopping approach so as to avoid overfitting of the training
data, and another is to select some best predictions from a large
number of ANN’s runs. Ten best predictions are selected from
twenty ANN’s runs in the present study. Moreover, ANN employs
the hyperbolic tangent function as transfer functions in both hid-
den and output layers. Table 1 presents statistical information on
rainfall and streamflow data, including mean (l), standard devia-
tion (Sx), coefficient of variation (Cv), skewness coefficient (Cs),
minimum (Xmin), and maximum (Xmax). Obviously, the training
data cannot fully include the cross-validation and testing data in
terms of Wuxi. It’s recommended that all data be scaled to the
interval [�0.9, 0.9] instead of [�1, 1] which is the range of the
hyperbolic tangent function. The advantage of using [�0.9, 0.9] is
that some extreme data occurring outside the range of the training
data may be accommodated in the mapping of ANN.

2.2. Singular spectrum analysis

According to Golyandina et al. (2001), the basic SSA consists of
two stages: decomposition and reconstruction. The decomposition
stage involves two steps: embedding and singular values decom-
position (SVD); the reconstruction stage also comprises two steps:
grouping and diagonal averaging. Consider a real-valued time ser-
ies F = {x1, x2, . . . ,xN} of length N (>2). Assume that the series is a
nonzero series, viz. there exists at least one i such that xi – 0. Four
steps are briefly presented as follows.

2.2.1. 1st step: embedding
The embedding procedure maps the original time series to a se-

quence of multi-dimensional lagged vectors. Let L be an integer
(window length), 1 < L < N, and s be the delayed time as the multi-
ple of the sampling period. The embedding procedure forms
n = N � (L � 1)s lagged vectors Xi = {xi, xi+s, xi+2s, . . . ,xi+(L�1)s}T,
where Xi 2 RL, and i = 1,2, . . . ,n. The ‘trajectory matrix’ of the time
series is denoted by X = [X1 � � � Xi � � � Xn] having lagged vec-
tors as its columns. In other words, the trajectory matrix is

X ¼

x1 x2 x3 . . . xn

x1þs x2þs x3þs . . . xnþs

x1þ2s x2þ2s x3þ2s . . . xnþ2s

..

. ..
. ..

. ..
. ..

.

x1þðL�1Þs x2þðL�1Þs x3þðL�1Þs . . . xN

0BBBBBBB@

1CCCCCCCA ð1Þ

If s = 1, the matrix X is called Hankel matrix since it has equal ele-
ments on the ‘diagonals’ where the sum of subscripts of row and
column is equal to a constant. If s > 1, the equal elements in X are
not definitely in the ‘diagonals’.

2.2.2. 2nd step: SVD
Let S = XXT. Denoted by k1, k, . . . ,kL the eigenvalues of S taken in

the decreasing order of magnitude (k1 P k P k3 P � � �P kL P 0)
and by U1, U2, . . . ,UL the orthonormal system of the eigenvectors
of the matrix S corresponding to these eigenvalues. If we denote
Vi ¼ XT

i Ui
ffiffiffiffi
ki
p�
ði ¼ 1; . . . ; LÞ (equivalent to the ith eigenvector of

XTX), then the SVD of the trajectory matrix X can be written as



Table 1
Statistical information on rainfall and streamflow data.

Watershed and datasets Statistical parameters Watershed area and data period

l Sx Cv Cs Xmin Xmax

Wuxi
Rainfall (mm)

Original data 3.7 10.1 0.36 5.68 0 154 Area: 2000 km2

Training 3.4 8.9 0.39 4.96 0 102
Cross-validation 3.8 10.9 0.35 6.27 0 147 Data period: January, 1988–December, 2007
Testing 4.0 11.6 0.35 5.46 0 154

Runoff (m3/s)
Original data 61.9 112.6 0.55 7.20 6 2230
Training 60.6 95.6 0.63 5.90 8 1530
Cross-validation 60.7 132.2 0.46 8.35 6 2230
Testing 66.0 122.1 0.54 6.30 10 1730

Chongyang
Rainfall (mm)

Original data 3.1 8.5 0.4 5.7 0.0 122 Area: 1700 km2

Training 3.5 9.8 0.4 5.7 0.0 122
Cross-validation 2.9 7.0 0.4 3.9 0.0 48 Data period: January, 2004–December, 2007
Testing 2.6 7.0 0.4 5.6 0.0 78

Runoff (m3/s)
Original data 39.1 54.8 0.7 6.4 2.1 881
Training 48.1 70.1 0.7 5.5 6.9 881
Cross-validation 35.6 33.7 1.1 2.3 4.4 226
Testing 24.5 25.7 1.0 5.1 2.1 310
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X ¼ X1 þ � � � þ XL ð2Þ

where Xi ¼
ffiffiffiffi
ki
p

UiV
T
i . The matrices Xi have rank 1; therefore they are

elementary matrices. The collection (ki, Ui, Vi) will be called ith
eigentriple of the SVD. Note that Ui and Vi are also ith left and right
singular vectors of X, respectively.

2.2.3. 3rd step: grouping
The purpose of this step is to appropriately identify the trend

component, oscillatory components with different periods, and
structureless noises by grouping components. This step can be also
skipped if one does not want to precisely extract hidden informa-
tion by regrouping and filter of components.

The grouping procedure partitions the set of indices {1, . . . ,L}
into m disjoint subsets I1, . . . , Im, so the elementary matrix in Eq.
(2) is regrouped into m groups. Let I = {i1, . . . , ip}. Then the resultant
matrix XI corresponding to the group I is defined as
XI ¼ Xi1 þ � � � þ Xip . These matrices are computed for I1, . . . , Im and
substituting into Eq. (2) one obtains the new expansion

X ¼ XI1 þ � � � þ XIm ð3Þ

The procedure of choosing the sets I1, . . . , Im is called the eigentriple
grouping.

2.2.4. 4th step: Diagonal averaging
The last step in the Basis SSA transforms each resultant matrix

of the grouped decomposition (3) into a new series of length N. The
diagonal averaging is to find equal elements in the resultant matrix
and then to generate a new element by averaging over them. The
new element has the same position (or index) as that of these
equal elements in the original series. As mentioned in the step 1,
the concept of ‘diagonal’ is not true for s > 1. Regardless of the va-
lue of s larger than or equal 1, the principle of reconstruction is the
same. For s ¼ 1, the diagonal averaging can be carried out by for-
mula recommended by Golyandina et al. (2001). Let Y be a
(L � n) matrix with elements yij, 1 6 i 6 L, 1 6 j 6 n. Make
L⁄ = min(L, n), n⁄ = max(L, n) and N = n + (L � 1)s. Let y�ij ¼ yij if
L < n and y�ij ¼ yji otherwise. Diagonal averaging transfers matrix
Y to a series {y1, y2, . . . ,yN} by the following equation:
yk ¼

1
k

Pk
m¼1

y�m;k�mþ1 for 1 6 k < L�

1
L�
PL�

m¼1
y�m;k�mþ1 for L� 6 k 6 K�

1
N�kþ1

PN�K�þ1

m¼k�K�þ1
y�m;k�mþ1 for L� < k 6 N

8>>>>>>>><>>>>>>>>:
ð4Þ

Eq. (4) corresponds to averaging of the matrix elements over the
‘diagonals’ i + j = k + 1. The diagonal averaging, applied to a resul-
tant matrix XIk

, produces a N – length series Fk, and thus the original
series F is decomposed into the sum of m series:

F ¼ F1 þ � � � þ Fm ð5Þ

As mentioned above, these reconstructed components (RCs) can be
associated with the trend, oscillations or noise of the original time
series with proper choices of L and the sets of I1, . . . , Im. Certainly,
if the third step (namely, grouping) is skipped, F can be decomposed
into L RCs.
2.3. Model development

A representative data-driven R–R model can be defined as

bQ tþT ¼ f ðXtÞ ¼ f Q tþ1�l1 ;Rtþ1�l2 ; Stþ1�l3

� �
ð6Þ

where bQ tþT stands for the predicted flow at time instance t + T; T
(with T = 1–3 for the present study) refers to how far into the future
the runoff prediction is desired; Qtþ1�l1 is the antecedent flow (up to
t + 1 � l1 time steps); Rtþ1�l2 is the antecedent rainfall (up to
t + 1 � l2 time steps) and Stþ1�l3 (up to t + 1 � l3 time steps) repre-
sents any other factors contributing to the true flow Qt+T, such as
evaporation or temperature; l1, l2, and l3 respectively stand for the
number of previous flow, rainfall and other factors. The predictabil-
ity of future behavior is a consequence of the correct identification
of the system transfer function of f(�). Herein, linear regression and
nonlinear regression (e.g. ANN) techniques are respectively used to
approximate the f(�).
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2.3.1. LR
The LR model herein is actually called stepwise linear regres-

sion (SLR) model because the forward stepwise regression is used
to determine optimal input variables. The basic idea of SLR is to
start with a function that contains the single best input variable
and to subsequently add potential input variables to the function
one at a time in an attempt to improve model performance. The or-
der of addition is determined by using the partial F – test values to
select which variable should enter next. The high partial F – value
is compared to a (select or default) F – to-enter value. After a var-
iable has been added, the function is examined to see if any vari-
able should be deleted. More details can be found in Draper and
Smith (1998) and McCuen (2005).
2.3.2. ANN
The multi-layer perceptron network is by far, among ANN par-

adigms, the most popular, which usually uses the technique of er-
ror back propagation to train the network configuration. The
architecture of the ANN consists of a number of hidden layers
and a number of neurons in the input layer, hidden layers and out-
put layer. ANNs with one hidden layer are commonly used in
hydrologic modeling (Dawson and Wilby, 2001; de Vos and Rient-
jes, 2005) since these networks are considered to provide enough
complexity to accurately simulate the nonlinear-properties of the
hydrologic process. The three-layer ANN can be denoted by m �
h � 1, where m stands for number of neuron in the input layer
and h is the number of neuron in the hidden layer. According to
Eq. (6), m = l1 + l2 + l3. The ANN prediction model is formulated as

bQ tþT ¼ f ðXt ;w; h;m; hÞ ¼ h0 þ
Xh

j¼1

wout
j u

Xm

i¼1

wjiXt þ hj

 !
ð7Þ

where u denotes transfer functions; wji are the weights defining the
link between the ith node of the input layer and the jth of the hid-
den layer; hj are biases associated to the jth node of the hidden
layer; wout

j are the weights associated to the connection between
the jth node of the hidden layer and the node of the output layer;
and h0 is the bias at the output node. To apply Eq. (7) to runoff pre-
dictions, appropriate training algorithm is required to optimize w
and h.
2.3.3. MANN
To construct MANN, the training data have to be divided into

several clusters according to cluster analysis techniques, and then
each single model is applied to each cluster. The fuzzy c-means
(FCM) clustering technique is adopted in the present study (e.g.,
Bezdek, 1981; Wang et al., 2006). It is able to generate either soft
or crisp clusters. Predictions from a modular model can be con-
ducted in two ways: soft and hard. Soft prediction means that
the testing data can belong to each cluster with different weights.
As a consequence, the modular model output would be a weighted
average of the outputs of several single models fitted for each clus-
ter of training data. Hard prediction is that the modular model out-
put is directly from the output of only triggered local model. ANN
(or similar techniques) is unable to extrapolate beyond the range of
the data used for training. Otherwise, poor predictions or predic-
tions can be expected when a new input data is outside the range
of those used for training. Hard prediction method is, therefore,
adopted in this study.

Fig. 2 displays the schematic diagram of MANN where the train-
ing data is partitioned into three clusters. Once input–output pairs
are obtained, they are first split into three subsets by the FCM tech-
nique, and then each subset is approximated by a single ANN. The
final output of the modular model results directly from the output
of one of three local models.
2.4. Implementation framework of R–R prediction

Fig. 3 illustrates the implementation framework of rainfall–run-
off prediction where four prediction models can be conducted in
two modes: without/with three data preprocessing methods
(dashed box). These acronyms in the column of ‘‘methods for mod-
el inputs’’ represent five methods to determine model inputs: LCA
(linear correlation analysis, Sudheer et al., 2002), AMI (average mu-
tual information, Fraser and Swinney, 1986), PMI (partial mutual
information, May et al., 2008), SLR (stepwise linear regression),
and MOGA (ANN-based on multi-objective genetic algorithm,
Giustolisi and Savic, 2006).
2.5. Evaluation of model performances

The Pearson’s correlation coefficient (r) or the coefficient of
determination (R2 = r2), have been identified as inappropriate mea-
sures in hydrologic model evaluation by Legates and McCabe
(1999). The coefficient of efficiency (CE) (Nash and Sutcliffe,
1970) is a good alternative to r or R2 as a ‘‘goodness-of-fit’’ or rel-
ative error measure in that it is sensitive to differences in the ob-
served and predicted means and variances. Legates and McCabe
(1999) also suggested that a complete assessment of model perfor-
mance should include at least one absolute error measure (e.g.,
RMSE) as necessary supplement to a relative error measure. Be-
sides, the Persistence Index (PI) (Kitanidis and Bras, 1980) was
adopted here for the purpose of checking the prediction lag effect.
Three measures are therefore used in this study. They are listed
below.

CE ¼ 1�
Xn

i¼1

ðQ i � bQ iÞ2
,Xn

i¼1

Q i � Q
� �2

ð8Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1

ðQ i � bQ iÞ2
vuut ð9Þ

PI ¼ 1�
Xn

i¼1

ðQ i � bQ iÞ2
,Xn

i¼1

Q i � Qi�lð Þ2 ð10Þ

In these equations, n is the number of observations, bQ i stands for
predicted flow, Qi represents observed flow, Q denotes average ob-
served flow, and Qi�l is the flow estimate from a persistence model
(or termed naı̈ve model) that basically takes the last flow observa-
tion (at time i minus the lead time l) as the prediction. CE and PI val-
ues of 1 stands for perfect fits. A small value of PI may imply the
occurrence of the lag prediction.
3. Applications of models

3.1. Potential input variables

In the process of determining model inputs, the first step is to
find out appropriate input variables (causal variables) for Eq. (6).
In general, causal variables in the R–R relationship can be rainfall
(precipitation), previous flows, evaporation, temperature, etc.
Depending on the availability of data, the input variables tend to
be varied in previous studies. Most studies employed rainfall and
previous flow (or water level) as inputs (Campolo et al., 1999;
Liong et al., 2002; Xu and Li, 2002; Sivapragasam et al., 2007)
whereas input variables in some studies also included additional
factors such as temperature or evaporation (Abrahart et al., 1999;
Tokar and Johnson, 1999; Zealand et al., 1999; Zhang and
Govindaraju, 2000; Coulibaly et al., 2001; Abebe and Price, 2003;
Solomatine and Dulal, 2003;Wilby et al., 2003; Hu et al., 2007; Toth
and Brath, 2007; Solomatine and Shrestha, 2009).
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The necessity of previous flows in model inputs was widely rec-
ognized by researchers (Campolo et al., 1999; de Vos and Rientjes,
2005). Campolo et al. (1999) made use of distributed rainfall data
observed at different raingauge stations for the prediction of water
levels at the catchment outlet. Poor predicted results were
achieved when only water levels were used as input. However,
the accuracies of predictions were improved when rainfall and pre-
vious water levels were included in inputs. de Vos and Rientjes
(2005) employed different model inputs as hydrological state rep-
resentation of ANN. Results also showed that the ANN model with
rainfall input variable only had the worst performance compared
to those whose input variables consisting of rainfall, flow and/or
other states.

However, some studies pointed out that evaporation (or tem-
perature) as input variable seemed to be unnecessary (Abrahart
et al., 2001; Anctil et al., 2004; Toth and Brath, 2007). Anctil
et al. (2004) found that potential evapotranspiration failed to im-
prove the MLP performance when it was introduced into the initial
model inputs consisting of rainfall and streamflow for R–R model-
ing. Results from Toth and Brath (2007) also indicated that the
inclusion of potential evapotranspiration values in inputs did not
improve the prediction results, but gave rise to a slight deteriora-
tion in comparison with the use of precipitation data alone. That
result may be explained by the fact that the addition of evapo-
transpiration (or temperature measures) input nodes increases
the network complexity, and therefore the risk of overfitting. In
the present experiments, analyses of LCA, AMI, and PMI between
evaporation and streamflow indicate that evaporation can be ex-
cluded since the dependence relation is not significant. Therefore,
rainfall and streamflow are identified as final input variables.
3.2. Selection of model inputs

Having chosen appropriate input variables, the next step is the
determination of appropriate lags for each variable to form model
inputs. ANN, equipped with Levernberg–Marquardt training algo-
rithm and hyperbolic tangent transfer functions, is used as the
benchmark model to examine five input methods.

Fig. 4 demonstrates the results of LCA of the runoff series for
Wuxi and Chongyang. The partial auto-correlation function (PACF)
value decayed within the confidence band around at lag 5 for Wuxi
and lag 4 for Chongyang. Therefore, the number l1 of lags of flow
was initially set at the value of 5 for Wuxin and 4 for Chongyang.
The number l2 of lags of rainfall is generally determined according
to time of concentration of the watershed. The time of concentra-
tion used herein is estimated between the center of hyetograph
and the peak flow. The average time of concentration is approxi-
mately 1 day for Wuxi and Chongyang. To take account of delay be-
tween rainfall and runoff, the value of l2 is originally set to 5 for
both Wuxi and Chongyang. Table 2 presents the results of ANN
with different model inputs determined by LCA, AMI, PMI, SLR
and MOGA. These results are based on one-step-ahead flow predic-
tion (i.e. bQ tþ1, where t represents the present time instance). In
Raw input 
series 

X
FCM 

clustering

Determination
of model 

inputs 

Fig. 2. Flow char
terms of RMSE, there is no salient difference among all five meth-
ods. However, our experiments reveal that the ANN with inputs
from LCA outperforms the others in the SSA scenario. Moreover,
LCA can significantly reduce the effort and computational time
requirement in developing an ANN model. The LCA method is
therefore adopted for the later analysis. Fig. 5 illustrates cross cor-
relation functions (CCFs) between rainfall and streamflow for Wuxi
and Chongyang. The past five rainfall observations have significant
relations (correlation coefficient >0.2) with the present streamflow.
The most significant correlation occurs at the first lag which indi-
cates the time of response of watershed being about 1 day.

3.3. Identification of models

The model identification of a prediction model is to determine
the structure by using training data to optimize relevant model
parameters once model inputs are already obtained.

3.3.1. LR
LR can be viewed as a model-driven model which has known

model structure. Model identification only consists in optimizing
the coefficient of each input. The stepwise linear regression (SLR)
technique was used to concurrently determine the model inputs
and the corresponding coefficients. With model inputs already ob-
tained by SLR in Table 2, the LR model at one-step lead for Wuxi
and Chongyang can expressed respectively as,bQ tþ1 ¼ �0:019Q t�4 þ 0:025Q t�2 þ 0:016Q t�1 þ 0:469Q t

þ 0:046Rt�4 þ 0:07Rt�3 þ 0:027Rt�2 þ 0:121Rt�1

þ 0:272Rt ð11Þ

and,bQ tþ1 ¼ 0:032Q t�3 þ 0:526Qt þ 0:099Rt�3 þ 0:053Rt�2

þ 0:037Rt�1 þ 0:454Rt ð12Þ
3.3.2. ANN and MANN
As a three-layer MLP was adopted, the identification of ANN’s

structure is to optimize the number of hidden nodes L in the hid-
den layer when the model inputs have been determined by LCA
and there is a unique model output. The optimal size h of the
hidden layer is found by systematically increasing the number of
hidden neurons from 1 to 10 until the network performance on
the cross-validation set no longer improves significantly. The
identified configurations of ANN were 10–8–1 for Wuxi and 9–9–
1 for Chongyang, respectively (presented in Table 2). The same
method is used to identify three local ANNs in MANN. As a
consequence, the structures of MANN are 10–4/4/2–1 for Wuxi
and 9–3/3/1–1 for Chongyang, respectively.

In order to perform multi-step-ahead predictions, two methods
are available: (1) re-using a one-step-ahead prediction as input
into the network, after which it predicts the two-step-ahead
prediction, and so forth, and (2) by directly having the multi-
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step-ahead prediction as output. The former and the latter are
respectively termed the dynamic model and static model. For sim-
plification, the static model is adopted herein.
3.4. Decomposition of rainfall and runoff series by SSA

To filter raw rainfall and runoff series, each series needs to be
decomposed into components with the aid of SSA. The decomposi-
tion by SSA requires identifying the parameter pair (s, L). The
choice of L represents a compromise between information content
and statistical confidence (Elsner and Tsonis, 1996). The value of an
appropriate L should be able to clearly resolve different oscillations
hidden in the original signal. However, the present study does not
require accurately resolving the raw rainfall signal into trends,
oscillations, and noises. A rough resolution can be adequate for
the separation of signals and noises where some leading eigen-
values should be identified. To select L, a small interval of [3, 10]
was examined in the present study.

A target L can be empirically determined in accordance with a
specified criterion: the singular spectrum under the target L can
be distinguished markedly, i.e. singular values forming the singular
spectrum are quite different from each other. Fig. 6 illustrates the
sensitivity analysis of the singular spectrum on L for rainfall and
streamflow series from two basins of Wuxi and Chongyang. Singu-
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Fig. 4. Plots of ACF and PACF of the runoff series with the 95% confidence bou
lar values of both rainfall and flow series in the Wuxi watershed
are clearly separated. Clearly, in terms of the criterion, L can be
arbitrarily chosen from 3 to 10. To obtain a more robust ANN mod-
el, it is recommended that a larger L be taken which results in more
combinations of RCs in the process of seeking the optimal model
inputs. Thus, the final L is set at the value of 9 for the Wuxi rainfall,
7 for the Wuxi flow, 7 for both Chongyang rainfall and flow. Fig. 6
highlights the singular spectrum curve associated with the se-
lected L in the dotted line.

Fig. 7 shows the results of sensitivity analysis of the singular
spectrum on the lag time s using SSA with the chosen L . The sin-
gular spectrum can be clearly distinguished at s = 1. Therefore, the
final parameter pair (s, L) in SSA was set as (1, 9) for the Wuxi rain-
fall, and (1, 7) for the other three series. Thus, each rainfall or flow
series can be decomposed into RCs with these identified parameter
pair.
3.5. Combination of models with SSA

Once an input (rainfall or runoff) time series is decomposed into
RCs, the subsequent task is to filter RCs by finding contributing RCs
from all existing RCs to model output, and then reconstruct a new
input series by summing these contributing RCs. There is no prac-
tical guide on how to identify a contributing or noncontributing
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Table 2
Comparison of methods to determine mode inputs using ANN.

Watershed Methods s l1 l2 m Effective inputs Identified ANN RMSE

Wuxi LCA 1 5 5 10 All (10–8–1) 41.98
AMI 1 5 5 10 All (10–8–1) 41.98
PMI 1 5 5 10 All (10–8–1) 41.98
SLR 1 5 5 10 Except for Rt-3 (9–5–1) 40.54
MOGA 1 5 5 10 Rt, Rt-1, Rt-2, Rt-3, Rt-4, Qt, Qt-1, Qt-4 (8–6–1) 43.23

Chongyang LCA 1 5 4 9 All (9–9–1) 14.43
AMI 1 5 4 9 Except for Rt (8–7–1) 14.18
PMI 1 5 4 9 Except for Rt (8–7–1) 14.18
SLR 1 5 4 9 Except for Rt-1,t-2,t-4 (6–9–1) 13.54
MOGA 1 5 4 9 Rt, Rt-1, Rt-2, Rt-4, Qt, Qt-2, Qt-3 (7–5–1) 13.57
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Fig. 5. CCFs between rainfall and flow series with the 95% confidence bounds (the dashed lines): (a) for Wuxi, and (b) for Chongyang.
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component to the improvement of accuracy of prediction. Appar-
ently, a single higher-frequency component may be noncontribut-
ing. However, the situation may become complicated with the
combination of components and change of the prediction horizon.
For example, one component viewed as contribution to one-step-
ahead prediction may have a negative impact on two-step-lead
prediction. Nevertheless, the combined signal of several high-fre-
quency RCs may yield a better input/output mapping than a low-
frequency RC. Therefore, an enumeration method is recommended
where all input combinations from rainfall (or runoff) are exam-
ined. If the number of RCs is L, there are 2L combinations. For in-
stance, there are 29 combinations for the Wuxi rainfall series in
view of L = 9. It should also be noticed that the enumeration meth-
od may be computationally intensive if L is a large number, say 20
or 30.

Since input variables consist of rainfall and flow, the filtering
procedure has to be conducted separately for each variable. Taking
ANN with SSA (hereafter referred to as ANN-SSA) as an example,
two new ANN models need to be established for the purpose of
RCs’ filtering, one for rainfall input and the other for runoff input.
For the convenience of identification, the ANN model for rainfall in-
put filtering is denoted by ANN-RF, and the ANN model for runoff
input filtering is referred to as ANN-QF. ANN-RF has the same mod-
el output as that of the original ANN model and its model input is
the same as the rainfall part of the original ANN model inputs. Like-
wise, the ANN-QF model input is from the runoff part of the origi-
nal ANN model inputs, and both of them have the same model
output variable. Depending on trial and error, ANN-RF and ANN-
QF can be identified. For example, ANN-RF was 5–3–1 for Wuxi
and 5–4–1 for Chongyang, respectively, and ANN-QF was 5–4–1
for Wuxi and 4–1–1 for Chongyang, respectively. Similarly, LR-RF
and LR-QF were also developed for the RCs filtering of both rainfall
and runoff series in the context of LR. Table 3 presents the RCs
filtering results of input variables of rainfall and runoff for both
LR-SSA and ANN-SSA (or MANN-SSA). Two basic conclusions can
be drawn from Table 3 in the context of SSA: one is that ANN-
SSA outperforms LR-SSA with the same model inputs; the model
with only runoff input, either LR-SSA or ANN-SSA, performs better
than that with only rainfall input. Therefore, inclusion of flow in
model inputs proves to be imperative in R–R prediction.
4. Results and discussion

Results of R–R prediction are respectively presented according
to the normal mode and SSA mode. In each mode, three models
of LR, ANN, and MANN are compared by three model performance
indices. In the SSA mode, three models are referred to as LR-SSA,
ANN-SSA, and MANN-SSA.
4.1. Predictions in normal mode

As observed from Table 4, all models except for LR for Chongy-
ang have made one-step-ahead predictions with a high CE over 0.7.
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This indicates that causal variables of model output have been
accurately selected for this prediction horizon. The performance
of each model deteriorates abruptly with the increase of prediction
horizons, which may indicate the adoption of inappropriate model
inputs. Basically, it is intuitive that a poor prediction on the testing
set may result from the lack of similar patterns between the train-
ing set and testing set. Conversely, an excellent prediction proba-
bly means that there are a large number of similar patterns
between them. For example, all models perform better using the
Wuxi data than using the Chongyang data since the former has a
large size training data (10 years) which allows models to be
appropriately trained. A conclusion can also be drawn that ANN
(or MANN) tends to be superior to LR if the mapping relation is
identified appropriately. The superiority of MANN over ANN seems
to be dependent on the studied data.

Fig. 8 illustrate representative details of hydrographs and whole
scatter plots of one-step-ahead prediction using three prediction
1 2 3 4 5 6 7 8 9
6

6.5

7

7.5

8

ln
 (

si
ng

ul
ar

 v
al

ue
)

singular number, L

Rainfall (Wuxi)

1 2 3 4 5 6 7
8

8.5

9

9.5

10

10.5

ln
 (

si
ng

ul
ar

 v
al

ue
)

singular number, L

Flow (Wuxi)

τ = 1
τ = 3
τ = 5
τ = 7
τ = 10

τ = 1
τ = 3
τ = 5
τ = 7
τ = 10

(a) (

((c)

Fig. 7. Sensitivity analysis of singular spectrum on varied
models for Wuxi and Chongyang, respectively. The scatter plot
from the LR model with high spread at low-magnitude flows indi-
cates poor predictions of low flows compared with scatter plots
from both ANN and MANN. ANN and MANN fairly underestimate
or overestimate peak flows, but reproduce low flows appropriately
because low flows are more frequent in the data set than large
flows.

In order to set up a relative optimal model for runoff prediction,
some researchers carried out runoff predictions depending on ANN
(or similar techniques) with two different inputs: inputs with ante-
cedent runoffs only; and inputs with both antecedent rainfalls and
runoffs. For example, Minns (1998) observed a phase shift error in
prediction outputs when antecedent discharge values were the
only inputs used to predict present discharge. However, models
developed using discharge and rainfall inputs were not observed
to exhibit phase shift errors. Sivapragasam et al. (2007) respec-
tively used GP (genetic programming) and ANN to predict river
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flows from one- up to four-step leads with the two types of inputs.
Results indicated that the model with rainfall and flow as inputs,
regardless of GP or ANN, made more accurate prediction than that
with only flow input. In this study, we will extend this comparison
from the normal mode to the SSA mode.

According to the same method to construct ANN or MANN in
the context of rainfall–runoff transformation as mentioned proce-
dures in Section 3, identified ANNs with only runoff inputs are 5–
3–1 for Wuxi, and 4–8–1 for Chongyang, and identified MANNs
with only runoff inputs are 5–10/10/4–1 for Wuxi, and 4–8/8/5–
1 for Chongyang. In the SSA mode, parameter pair (s, L) is also
(1, 7) for each of them.

Table 5 presents comparison of runoff predictions using ANN
and MANN with two types of inputs: past flow as the only input
variable, and previous rainfall and flow as input variables. It can
be observed that, for the study case of Wuxi, the inclusion of rain-
fall in input results in the improvement of model performance irre-
spective of ANN and MANN. However, the degree of the
improvement mitigates with the increase of prediction leads. This
may indicate that the influence of rainfall on runoff gradually
weakens with the increase of prediction horizons. An opposite re-
sult was found by Sivapragasam et al. (2007) in which the influ-
ence of rainfall on runoff (the time resolution of the data is
fortnightly) gradually increased with increasing prediction lead.
Employing the data with an hourly time resolution, Toth and Brath
(2007) investigated the performance of ANN in two types of inputs.
They found that ANN with the inclusion of rainfall in input outper-
formed ANN with only flow as input at all prediction leads from 1 h
up to 12 h. Actually, whether or not rainfall is introduced to input
heavily relies on the characteristic of the studied watershed. In
general, inclusion of rainfall in input could be helpful in improving
accuracy of predictions if the prediction lead is less than the aver-
age time of concentration. The time of concentration can be
roughly identified by the AMI (or CCF) analysis between available
rainfall and flow data, and it approximately equals the maximum
AMI (or CCF). As shown in Fig. 5, the time of concentration in each
basin is around 1 day. If the time resolution of data is hourly-based,
the time of concentration can be approximated to hours but days.
Therefore, the inclusion of rainfall in input has led to a noticeable
improvement of accuracy of one-day-ahead prediction. In this re-
gard, a more detailed analysis will be addressed in the section of
discussions.

The hydrograph of one-step-ahead prediction is presented in
Fig. 9. The ANN model with only flow input makes the lagged pre-
dictions whereas the ANN model with rainfall and flow as inputs
eliminates the lag effect. However, with the increase of prediction
Table 3
Optimal p RCs of rainfall and runoff input variables at various forecast horizons.

Filter model Prediction horizons Wuxi

Optimal p RCs

LR-RF 1 All RCs
2 1 2 3 5a

3 1 2 3

LR-QF 1 1 2 3
2 1 2
3 1

ANN-RF 1 1 3 4 6 7
2 1 2 3 4 5
3 1 2 3 4

ANN-QF 1 1 2 3 4
2 1 2 7
3 3 7

a Note: the numbers of ‘‘1, 2, 3, 5’’ stand for RC, RC2, RC4, and RC5, and RC1 is associate
etc.
leads, each of two types of ANN yields a prediction lag effect as
shown in Fig. 10, which indicates the effect of rainfall on model
output being markedly mitigated.

4.2. Predictions in SSA mode

Table 6 presents the results of R–R predictions for Wuxi and
Chongyang using three prediction models coupled with SSA. Com-
pared with the results of Table 4, the SSA technique brings about a
significant improvement of model performance at all three predic-
tion horizons. Models of ANN and MANN outperform the LR model,
but the MANN model exhibits no superiority over the ANN model.

The representative details of hydrograph and whole scatter
plots of one-step-ahead prediction for Wuxi and Chongyang are
shown in Fig. 11. These results show that three models with SSA
are able to make good predictions because the predicted hydro-
graph perfectly reproduces the actual hydrograph and the scatter
plots are close to the exact line with rather a low spread. It can
be observed from the hydrograph that the LR-SSA model produces
some negative predictions for the low flows and ANN-SSA and
MANN-SSA occasionally make negative predictions at the low-flow
points. The peak values are still overestimated or underestimated
although each model with SSA exhibits excellent overall
performances.

Table 7 presents comparison of two types of model inputs feed-
ing ANN-SSA and MANN-SSA. ANN-SSA (or MANN-SSA) fed by
rainfall and flow performs better than the corresponding model
fed by only flow at all prediction leads. It is observed that the
advantage of models with rainfall and flow inputs over those with
flow input only becomes more obvious with increasing prediction
leads, which indicates that SSA improves the dependence relation
more significantly between rainfall and flow than that between
flows itself. The model output may therefore depend more on rain-
fall inputs instead of flow itself when the prediction lead is larger
than 1 day.

Fig. 12 illustrates one-step-ahead prediction hydrographs for
Wuxi and Chongyang using ANN-SSA in two types of inputs.
ANN-SSA with rainfall and flow inputs better captures the peak
flows, and reproduces the actual hydrograph more smoothly
whereas the hydrograph from ANN-SSA with flow input only is ser-
rated at some locations. It is found that there is no time shift be-
tween the predicted hydrograph and the actual one. Fig. 13
demonstrates the results of lag effect analysis at all three predic-
tion horizons by depicting CCF between observation and predic-
tion. SSA eradicates the prediction lag effect in the ANN model
regardless of model input types. Moreover, it can be observed that
Chongyang

RMSE Optimal p RCs RMSE

57.13 1 3 25.88
58.37 1 2 6 25.81
74.24 1 2 7 25.49

35.83 1 2 3 8.92
55.94 1 2 13.41
67.60 1 16.60

49.72 1 3 5 7 18.45
52.38 1 3 19.11
60.01 1 2 21.72

31.49 1 2 3 11.67
45.39 1 2 14.97
53.55 1 17.26

d with the maximum eigenvalue, RC2 corresponds to the second largest eigenvalue,



Table 4
R–R model performances at three prediction horizons in the normal mode.

Watershed Model RMSE CE PI

1⁄ 2⁄ 3⁄ 1 2 3 1 2 3

Wuxi LR 49.40 89.40 108.90 0.84 0.46 0.21 0.70 0.51 0.39
ANN 43.97 87.32 104.94 0.87 0.49 0.26 0.76 0.54 0.43
MANN 40.44 71.87 86.54 0.89 0.66 0.50 0.80 0.69 0.61

Chongyang LR 19.18 22.74 25.53 0.44 0.22 0.01 0.17 0.29 0.24
ANN 12.90 25.80 27.81 0.75 0.10 �0.15 0.63 0.10 0.13
MANN 13.27 26.86 23.96 0.74 �0.07 0.14 0.61 0.03 0.35

⁄ The number of ‘‘1, 2, and 3’’ denote one-, two-, and three-step-ahead forecasts.
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Fig. 8. Hydrographs (representative details) and scatter plots of one-step-ahead prediction for (a) Wuxi and (b) Chongyang.
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the CCF curve in ANN-SSA with rainfall and flow inputs is more
symmetrical than that in ANN-SSA with only flow input, which re-
veals that predictions in the former is in better agreement with the
observations in time.
4.3. Discussions

The following discussions focus on two aspects: investigating
the difference between two types of model inputs for runoff pre-
diction, and investigating the effect of SSA on the R–R ANN model
inputs.
Table 5
Performances of ANN and MANN in two types of input variables.

Watershed Input variables Model RMSE

1 2 3

Wuxi Rainfall + flow ANN 43.97 87.32 10
MANN 40.44 71.87 86

Flow ANN 81.3 104.6 11
MANN 75.7 93.7 97

Chongyang Rainfall + flow ANN 12.90 25.80 27
MANN 13.27 26.86 23

Flow ANN 20.3 26.1 27
MANN 17.8 22.3 23
4.3.1. Analysis of model inputs
As shown in Table 5, ANN with rainfall and flow inputs per-

forms better than that with flow input only at all prediction leads,
but the improvement of model performance decreases abruptly at
a two-step lead. A direct explanation for that phenomenon is that
the impact of rainfall on runoff weakens suddenly at two-step-
ahead prediction, which can be examined by AMI and CCF between
model inputs and output.

Fig. 14a presents AMI between each input and output of ANN in
two model input scenarios for the Wuxi study case. The number of
model inputs in the abscissa axis consists of 5 previous flow data
CE PI

1 2 3 1 2 3

4.94 0.87 0.49 0.26 0.76 0.54 0.43
.54 0.89 0.66 0.50 0.80 0.69 0.61

1.5 0.56 0.27 0.17 0.19 0.33 0.36
.1 0.62 0.41 0.37 0.30 0.46 0.51

.81 0.75 0.10 �0.15 0.63 0.10 0.13

.96 0.74 �0.07 0.14 0.61 0.03 0.35

.8 0.38 �0.04 �0.18 0.08 0.06 0.10

.4 0.52 0.24 0.17 0.29 0.31 0.36
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Fig. 9. Hydrographs for one-step-ahead prediction using ANN with two types of inputs: (a) Wuxi and (b) Chongyang.
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and 4 previous rainfall data. The former 5 inputs stand for 5 past
flows and the latter 5 inputs denote 5 past rainfall observations.
In contrast, all 10 model inputs (actually 5) in the flow input sce-
nario are the past 10 flow observations. First of all, it is clearly
shown from all three sub-plots that AMI associated with each
model input decreases significantly with an increase in the predic-
tion lead, which may indicate decrease of the overall dependence
relation between model inputs and output. Therefore, it provides
a potential explanation for the trend in Table 6 that the accuracy
of the prediction decreases with the increase of prediction hori-
zons. Secondly, the nearest rainfall observation (the sixth model
input in each plot) to the prediction horizon has the maximum
AMI, so inclusion of such input improves the prediction. Some of
the other rainfall inputs also have reasonably larger AMI compared
to that of flow inputs, and they also contribute to the improvement
of model performance.

Fig. 14b shows AMI of each input and output of ANN with two
types of inputs for the Chongyang study case. Regarding ANN in
rainfall and flow inputs, the first 4 model inputs in the abscissa axis
are from the past flows and the latter 5 inputs represent the 5 last
rainfall observations. As far as ANN with flow input only is con-
cerned, the first 4 model inputs in the abscissa axis are the actual
inputs. It can be observed that, AMI of each model input and output
between two-step-ahead and three-step-ahead predictions is sim-
ilar and very small regardless of the input scenario. Moreover, the
holistic AMI from rainfall inputs does not dominate over the over-
all AMI from flow inputs. Therefore, inclusion of such rainfall in-
puts may only make the training process computation intensive
without any tangible improvement in prediction accuracy. As a
consequence, the model performance of ANN with two types of in-
puts is similarly poor for both two- and three-step-ahead predic-
tions (depicted as Table 5). On the contrary, for one-step-ahead
prediction, the nearest two rainfall inputs have large AMIs which
are only smaller than the AMI of the immediate past flow input.
As expected, their inclusion in model inputs improves the overall
mapping between inputs and output of ANN, making one-step-
ahead prediction with good accuracy.

The static multi-step prediction method is adopted in this
study. The poor prediction at two- or three-step-ahead horizon
using ANN with rainfall and flow as inputs may be improved by
adopting a dynamic ANN model instead of the current static ANN
model. In the dynamic ANN model, the predicted flow and rainfall
in the last step are used as the nearest flow and rainfall inputs in
the present prediction step, and then a multi-step prediction be-
comes a repeated one-step prediction. However, de Vos and Rient-
jes (2005) mentioned that for both the daily and hourly data the
two multi-step prediction methods performed nearly similar up
to a lead time of respectively 4 days and 12 h. Similarly, the results
from Yu et al. (2006) for hourly data also showed that two methods
could yield similar predictions.
4.3.2. Investigation of the SSA effect on model inputs
Herein, the effect of SSA on inputs of an ANN R–R model is

investigated by AMI between each input and output of model. Re-
sults of prediction from the ANN R–R model with the normal mode
(shown in Tables 4 or 5) show that the flows at one-step lead are
predicted appropriately whereas poor predictions are obtained at
two- or three-step lead. Correspondingly, it can be observed from
Table 6 Fig. 15a that AMI associated with each model input for
one-step prediction is far larger than the counterparts for two- or
three-step predictions. Fig. 15b shows that SSA improved AMI of
each input at all three prediction horizons. The AMI curve of fil-
tered inputs between one- and two-step predictions is very similar,
which may indicate similar model performance (shown in Tables 6
or 7 where the model performance at the two prediction leads is
also quite similar). Therefore, the AMI analysis proves to be able
to reveal the suitability of a prediction model to some extent.
Fig. 15b also reveals that AMI at one-step prediction is far larger
than that at two- and three-step leads. So the prediction accuracy
at the former is markedly superior to that in the latter (shown in
Tables 4 or 5). In the SSA mode, AMI of each input is considerably
improved at all prediction horizons, which renders the ANN-SSA
R–R model good predictions (shown in Tables 6 or 7) in compari-
son to that in the normal mode.
5. Conclusions

This study has predicted daily rainfall–runoff transformation
from two different watersheds, namely Wuxi and Chongyang,
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Fig. 10. Lag analysis of observation and forecasts of ANN with two types of inputs: (a and c) for Wuxi, and (b and d) for Chongyang.

Table 6
Performances of R–R models in the SSA mode.

Watershed Model RMSE CE PI

1 2 3 1 2 3 1 2 3

Wuxi LR-SSA 29.02 44.42 58.34 0.94 0.87 0.77 0.90 0.88 0.82
ANN-SSA 25.40 27.10 33.96 0.96 0.95 0.92 0.92 0.96 0.94
MANN-SSA 25.08 26.87 34.05 0.96 0.95 0.92 0.92 0.96 0.94

Chongyang LR-SSA 9.19 13.53 14.61 0.87 0.72 0.68 0.81 0.75 0.75
ANN-SSA 6.22 7.08 11.12 0.94 0.93 0.82 0.91 0.93 0.86
MANN-SSA 6.42 8.13 13.14 0.94 0.90 0.74 0.91 0.91 0.80
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Fig. 11. Hydrographs (representative details) and scatter plots of one-step-ahead prediction in SSA mode for (a) Wuxi and (b) Chongyang.
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through three models (viz. LR, ANN and MANN) in conjunction
with SSA. Rainfall and runoff are firstly identified as appropriate in-
put variables, and then model inputs are selected by LCA after
comparison with the other four methods of determining model
inputs. The model performance seems to be sensitive to the stud-
ied case in the normal mode. For Wuxi, the MANN R–R model
(namely, rainfall and runoff as inputs) outperforms the ANN R–R
model and the ANN R–R model performs better than the LR R–R



Table 7
Performances of ANN-SSA and MANN-SSA using two types of input variables.

Watershed Input variables Model RMSE CE PI

1 2 3 1 2 3 1 2 3

Wuxi Rainfall + runoff ANN-SSA 25.40 27.10 33.96 0.96 0.95 0.92 0.92 0.96 0.94
MANN-SSA 25.08 26.87 34.05 0.96 0.95 0.92 0.92 0.96 0.94

Runoff ANN-SSA 31.02 50.64 61.80 0.94 0.83 0.74 0.88 0.84 0.80
MANN-SSA 26.20 41.02 48.69 0.95 0.89 0.84 0.92 0.90 0.88

Chongyang Rainfall + runoff ANN-SSA 6.22 7.08 11.12 0.94 0.93 0.82 0.91 0.93 0.86
MANN-SSA 6.42 8.13 13.14 0.94 0.90 0.74 0.91 0.91 0.80

Runoff ANN-SSA 7.93 11.15 15.72 0.91 0.81 0.63 0.86 0.83 0.72
MANN-SSA 7.32 10.19 15.71 0.92 0.84 0.63 0.88 0.86 0.72
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Fig. 12. Hydrographs for one-step-ahead prediction using ANN-SSA with two types of inputs: (a) Wuxi, and (b) Chongyang.
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Fig. 14. AMIs between model inputs and output for ANN with two types of inputs using the data of (a) Wuxi and (b) Chongyang.
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model at all three prediction horizons. For Chongyang, the ANN R–
R model performs the best among three models at one-step lead.
However, they are similar at the other two prediction horizons.
In the SSA mode, the performance of each model is significantly
improved. Both ANN-SSA and MANN-SSA have similar perfor-
mance and achieve better results than LR-SSA.

The ANN R–R model is also compared with the ANN model with
only runoff input. The ANN R–R model outperforms the ANN model
with only flow input in both the normal mode and SSA mode. The
degree of superiority tends to mitigate with the increase of predic-
tion leads in the normal mode. However, situation becomes reverse
in the SSA mode where the advantage of the ANN R–R model seems
to be more remarkable with the increase of prediction leads. It is
recommended from the present study that the ANN R–R model
coupled with SSA is more promising.

References

Abebe, A.J., Price, R.K., 2003. Managing uncertainty in hydrological models using
complementary models. Hydrological Sciences Journal–Journal des Sciences
Hydrologiques 48 (5), 679–692.



C.L. Wu, K.W. Chau / Journal of Hydrology 399 (2011) 394–409 409
Abrahart, R.J., See, L.M., Kneale, P.E., 1999. Using pruning algorithms and genetic
algorithms to optimise network architectures and forecasting inputs in a neural
network rainfall–runoff model. Journal of Hydroinformatics 1, 103–114.

Abrahart, R.J., See, L.M., Kneale, P.E., 2001. Applying saliency analysis to neural
network rainfall–runoff modelling. Computers and Geosciences 27, 921–928.

Anctil, F., Perrin, C., Andréassian, V., 2004. Impact of the length of observed records
on the performance of ANN and of conceptual parsimonious rainfall–runoff
forecasting models. Environmental Modeling and Software 19, 357–368.

ASCE, 2000. Artificial neural networks in hydrology 2: hydrology applications.
Journal of Hydrologic Engineering 5 (2), 124–137.

Baratta, D., Cicioni, G., Masulli, F., Studer, L., 2003. Application of an ensemble
technique based on singular spectrum analysis to daily rainfall forecasting.
Neural Networks 16, 375–387.

Bezdek, J.C., 1981. Pattern Recognition with Fuzzy Objective Function Algorithms.
Plenum Press, New York.

Birikundavyi, S., Labib, R., Trung, H.T., Rousselle, J., 2002. Performance of neural
networks in daily streamflow forecasting. Journal of Hydrologic Engineering 7
(5), 392–398.

Campolo, M., Andreussi, P., Soldati, A., 1999. River flood forecasting with a neural
network model. Water Resources Research 35 (4), 1191–1197.

Corzo, G., Solomatine, D., 2007. Baseflow separation techniques for modular
artificial neural network modelling in flow forecasting. Hydrological Sciences–
Journal-des Sciences Hydrologiques 52 (3), 491–507.

Coulibaly, P., Anctil, F., Bobée, B., 2000. Daily reservoir inflow forecasting using
artificial neural networks with stopped training approach. Journal of Hydrology
230, 244–257.

Coulibaly, P., Anctil, F., Bobée, B., 2001. Multivariate reservoir inflow forecasting
using temporal neural networks. Journal of Hydrologic Engineering 6 (5), 367–
376.

Dawson, C.W., Wilby, R.L., 2001. Hydrological modeling using artificial neural
networks. Progress in Physical Geography 25 (1), 80–108.

de Vos, N.J., Rientjes, T.H.M., 2005. Constraints of artificial neural networks for
rainfall–runoff modeling: trade-offs in hydrological state representation and
model evaluation. Hydrology and Earth System Sciences 9, 111–126.

Dibike, Y.B., Solomatine, D.P., 2001. River flow forecasting using artificial neural
networks. Physics and Chemistry of the Earth (B) 26 (1), 1–7.

Draper, N.R., Smith, H., 1998. Applied Regression Analysis, third ed. Wiley, New
York.

Elsner, J., Tsonis, A., 1996. Singular spectrum analysis. In: A New Tool in Time Series
Analysis. Plenum Press, New York.

Fraser, A.M., Swinney, H.L., 1986. Independent coordinates for strange attractors
from mutual information. Physical Review A 33 (2), 1134–1140.

Giustolisi, O., Savic, D.A., 2006. A symbolic data-driven technique based on
evolutionary polynomial regression. Journal of Hydroinformatics 8 (3), 207–222.

Golyandina, N., Nekrutkin, V., Zhigljavsky, A., 2001. Analysis of Time Series
Structure: SSA and Related Techniques. Chapman & Hall/CRC.

Hsu, K.L., Gupta, H.V., Sorooshian, S., 1995. Artificial neural network modeling of the
rainfall–runoff process. Water Resources Research 31 (10), 2517–2530.

Hu, T.S., Wu, F.Y., Zhang, X., 2007. Rainfall–runoff modeling using principal
component analysis and neural network. Nordic Hydrology 38 (3), 235–248.

Jain, A., Srinivasulu, S., 2004. Development of effective and efficient rainfall–runoff
models using integration of deterministic, real-coded genetic algorithms and
artificial neural network techniques. Water Resource Research 40, W04302.

Jain, A., Srinivasulu, S., 2006. Integrated approach to model decomposed flow
hydrograph using artificial neural network and conceptual techniques. Journal
of Hydrology 317, 291–306.

Kitanidis, P.K., Bras, R.L., 1980. Real-time forecasting with a conceptual hydrologic
model, 2, applications and results. Water Resources Research 16 (6), 1034–
1044.

Kumar, A.R.S., Sudheer, K.P., Jain, S.K., Agarwal, P.K., 2005. Rainfall–runoff modelling
using artificial neural networks: comparison of network types. Hydrological
Processes 19 (6), 1277–1291.

Legates, D.R., McCabe Jr., G.J., 1999. Evaluating the use of goodness-of-fit measures
in hydrologic and hydroclimatic model validation. Water Resources Research 35
(1), 233–241.
Liong, S.Y., Gautam, T.R., Khu, S.T., Babovic, V., Muttil, N., 2002. Genetic
programming: a new paradigm in rainfall–runoff modeling. Journal of
American Water Resources Association 38 (3), 705–718.

Lisi, F., Nicolis, Sandri, M., 1995. Combining singular-spectrum analysis and neural
networks for time series forecasting. Neural Processing Letters 2 (4), 6–10.

Maier, H.R., Dandy, G.C., 2000. Neural networks for the prediction and forecasting of
water resources variables: a review of modeling issues and applications.
Environmental Modeling and Software 15, 101–123.

Marques, C.A.F., Ferreira, J., Rocha, A., Castanheira, J., Gonçalves, P., Vaz, N., Dias, J.M.,
2006. Singular spectral analysis and forecasting of hydrological time series.
Physics and Chemistry of the Earth 31, 1172–1179.

May, R.J., Maier, H.R., Dandy, G.C., Fernando, T.M.K., 2008. Non-linear variable
selection for artificial neural networks using partial mutual information.
Environmental Modeling and Software 23, 1312–1328.

McCuen, R.H., 2005. Hydrologic Analysis and Design, third ed. Pearson/Prentice Hall,
Upper Saddle River, NJ.

Minns, A.W., 1998. Artificial Neural Networks as Subsymbolic Process Descriptors.
Balkema, Rotterdam, The Netherlands.

Mulvany, T.J., 1850. On the use of self-registering rain and flood gauges. Proceedings
of the Institution of Civil Engineers 4 (2), 1–8.

Nash, J.E., Sutcliffe, J.V., 1970. River flow forecasting through conceptual models
part I – a discussion of principles. Journal of Hydrology 10 (3), 282–290.

Partal, T., Kis�i, Ö., 2007. Wavelet and Neuro-fuzzy conjunction model for
precipitation forecasting. Journal of Hydrology 342 (2), 199–212.

Sajikumar, N., Thandaveswara, B.S., 1999. A non-linear rainfall–runoff model using
artificial neural networks. Journal of Hydrology 216, 32–55.

Shamseldin, A.Y., 1997. Application of a neural network technique to rainfall–runoff
modelling. Journal of Hydrology 199, 272–294.

Sivapragasam, C., Liong, S.Y., Pasha, M.F.K., 2001. Rainfall and runoff forecasting
with SSA–SVM approach. Journal of Hydroinformatics 3 (7), 141–152.

Sivapragasam, C., Vincent, P., Vasudevan, G., 2007. Genetic programming model for
forecast of short and noisy data. Hydrological Processes 21, 266–272.

Solomatine, D., Dulal, K., 2003. Model trees as an alternative to neural networks in
rainfall–runoff modelling. Hydrological Sciences Journal 48 (3), 399–411.

Solomatine, D.P., Shrestha, D.L., 2009. A novel method to estimate model
uncertainty using machine learning techniques. Water Resources Research 45,
W00B11. doi:10.1029/2008WR006839.

Solomatine, D.P., Xue, Y.I., 2004. M5 model trees and neural networks: application
to flood forecasting in the upper reach of the Huai River in China. Journal of
Hydrological Engineering 9 (6), 491–501.

Sudheer, K.P., Gosain, A.K., Ramasastri, K.S., 2002. A data-driven algorithm for
constructing artificial neural network rainfall–runoff models. Hydrological
Processes 16, 1325–1330.

Tokar, A.S., Johnson, P.A., 1999. Rainfall–runoff modeling using artificial neural
networks. Journal of Hydrologic Engineering 4 (3), 232–239.

Toth, E., Brath, A., 2007. Multistep ahead streamflow forecasting: role of calibration
data in conceptual and neural network modeling. Water Resources Research 43
(11), W11405.

Wang, W., Van Gelder, P.H.A.J.M., Vrijling, J.K., Ma, J., 2006. Forecasting daily
streamflow using hybrid ANN models. Journal of Hydrology 324, 383–399.

Wilby, R.L., Abrahart, R.J., Dawson, C.W., 2003. Detection of conceptual model
rainfall–runoff processes inside an artificial neural network. Hydrological
Sciences Journal 48 (2), 163–181.

Wu, C.L., Chau, K.W., Fan, C., 2010. Prediction of rainfall time series using modular
artificial neural networks coupled with data-preprocessing techniques. Journal
of Hydrology 389 (1-2), 146–167.

Xu, Z.X., Li, J.Y., 2002. Short-term inflow forecasting using an artificial neural
network model. Hydrological Processes 16 (12), 2423–2439.

Yu, P.S., Chen, S.T., Chang, I.F., 2006. Support vector regression for real-time flood
stage forecasting. Journal of Hydrology 328, 704–716.

Zealand, C.M., Burn, D.H., Simonovic, S.P., 1999. Short term stream flow forecasting
using artificial neural networks. Journal of Hydrology 214, 32–48.

Zhang, B., Govindaraju, R.S., 2000. Prediction of watershed runoff using Bayesian
concepts and modular neural networks. Water Resources Research 36 (3), 753–
762.

http://dx.doi.org/10.1029/2008WR006839

	Rainfall–runoff modeling using artificial neural network coupled with singular spectrum analysis
	Introduction
	Methodology
	Study area and data
	Singular spectrum analysis
	1st step: embedding
	2nd step: SVD
	3rd step: grouping
	4th step: Diagonal averaging

	Model development
	LR
	ANN
	MANN

	Implementation framework of R–R prediction
	Evaluation of model performances

	Applications of models
	Potential input variables
	Selection of model inputs
	Identification of models
	LR
	ANN and MANN

	Decomposition of rainfall and runoff series by SSA
	Combination of models with SSA

	Results and discussion
	Predictions in normal mode
	Predictions in SSA mode
	Discussions
	Analysis of model inputs
	Investigation of the SSA effect on model inputs


	Conclusions
	References


