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Traditional fracture analysis is based on fracture mechanics and damage mechanics. They focus on the propagation of the 
fracture. However, their propagation criterions are not easily applied in practice and the current analysis is limited in planar 
problem. This paper presents a new theory that the occurrence of the unbalanced force (derived from the Deformation Rein-
forcement Theory) could be the criterion of the initiation of the fracture, and the distribution area and propagation of the un-
balanced force could be the indication of the fracture propagation direction. By aggregate analysis with Stress Intensity Factor 
(SIF) criterion, the unbalanced force actually is the opposite external load that is the SIF difference incurred between the ex-
ternal loads and permitted by the structure. Numerical simulation and physical experiments on pre-fracture cuboid rock speci-
mens proved that the occurrence of the unbalanced force could be the initiation of the fracture. Mesh size dependence was also 
considered by analysis of different mesh size finite element gravity dam models. Furthermore, the theory was applied to the 
feasibility analysis of the Baihetan arch dam together with physical experiments in order to evaluate the fracture propagation of 
dam heel. The results show that it is an effective way to use unbalanced force to analyze the fracture initiation and propagation 
when performing 3-dimensional nonlinear FEM calculation. 
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1  Introduction 

Both the rock and concrete are heterogeneous and anisot-
ropic brittle materials. Their fracturing process has close 
ties with the deformation and failure. Currently the fracture 
analysis on rock structure includes two methods: fracture 
mechanics [1] and continuum damage mechanics [2]. The 
numerical tools include Finite Element Method (FEM) [3, 
4], eXtended FEM [5, 6], Element Free Method [7, 8], 
Boundary Element Method [9], Discrete Element Method 
[10], Numerical Manifold Method [11], Lattice model [12] 
and etc. 

There are two methods in the fracture propagation simula-
tion: Smeared Fracture Model [13] and Discrete Fracture 
Model [14]. For the first one, the fracture was simulated by 
parallel and serried elements. For the second one, the work-
load for remesh is heavy when separating the grid in order to 
simulate the fracture. What is worse, the mapping method of 
the new variables has not been resolved yet [15, 16]. Fracture 
mechanics and damage mechanics analyses were combined by 
some researchers [17]. This combined approach unites the 
accuracy of the special fracture-tip elements in fracture me-
chanics with the flexibility of fracture representation in dam-
age mechanics and is an effective means for the analysis of 
fracture propagation by the Finite Element Method. 

For the initiation and propagation of the fracture, there are 
several criterions: maximum tensile stress criterion [18], 
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Stress Intensity Factor (SIF) criterion [1], maximum energy 
release rate criterion [19, 20], minimum strain energy density 
criterion [21–23]. SIF criterion and maximum energy release 
rate criterion are mathematically equivalent. Rice proposed 
J-integral (together with Crack Opening Displacement, COD) 
to determine whether the fracture tip began to extend [1]. 

Those solutions mentioned above are effective in the planar 
analysis. However, the calculation workload is heavy, and the 
criterion is still outstanding when extended to 3-dimensional 
structure. Besides, the numerical methods used now are 
mainly based on linear plastic, while the actual rock and con-
crete are nonlinear materials. This paper presents a new theory 
that the occurrence of unbalanced force (derived from the De-
formation Reinforcement Theory (DRT)) [24, 25] could be the 
criterion of the initiation of fracture, and the distribution area 
and propagation could be the indication of the fracture propa-
gation direction. Numerical simulation and physical experi-
ments on pre-fracture cuboid rock specimens proved that the 
occurrence of unbalanced force could be the initiation of the 
fracture. Mesh size dependence was also considered by analy-
sis of different mesh size finite element dam models. Fur-
thermore, the theory was applied to the feasibility analysis of 
the Baihetan arch dam together with physical experiments in 
order to evaluate the fracture propagation. 

2  Fracture analysis based on Deformation Re-      
inforcement Theory 

2.1  Deformation Reinforcement Theory 

The rock and concrete are nonlinear materials, and currently 
the numerical analysis on those structures is mainly based 
on elastoplasticity. Solutions of elastic structures always 
exist and are unique, but solutions of elasto-plastic struc-
tures may not exist. The existence of structural solutions 
implies that the displacement and stress fields throughout 
the structure satisfy simultaneously equilibrium condition, 
kinematical admissibility and constitutive equations includ-
ing yield conditions under prescribed loading, so the struc-
ture is stable. The constitutive equations contain the yield 
criterion. If the structure could not maintain stable, there is 
no solution that could satisfy simultaneously the three con-
ditions mentioned above. 

Considering the arbitrary kinematical and equilibrium 
stress-field, 1, and kinematical and stable stress-field, , 
their difference is the plastic-stress increment field  

p: 

 p
1     . (1) 

The plastic-stress increment field  
p leads to the plastic- 

strain increment field  
p=C: 

p, while C is the fourth- 
order compliance tensors. 

Define a Euclidean space about stress field, and an arbi-
trary stress field is a point in the Euclidean space. Suppose a 
structure whose volume is V, if metric tensor is C/2, plastic 

complementary energy can be defined as 

 p p1
: : d

2
     

V

E VC . (2) 

This equation shows that E is also the norm of plas-
tic-stress increment field  

p. If E = 0, then  
p is always 

zero and the structure is stable. If E > 0, the structure is 
unstable. 

Since stress field 1= + 
p = [

1
ij] is a kinematical and 

equilibrium stress-field, it satisfies equilibrium condition. 
Assume that the body-force field is f = {fi} loading on an 
elasto-plastic structure, and S is stress boundary with T =  
Ti = {ijnj}. For an arbitrarily given virtual displacement 
u={ui}, the corresponding virtual strain is ij. So the 
principle of virtual displacements reads 

 1

   
d d dij ij i i i i

V V S
V u f V u T S     



   , (3) 

that is 

p

    
d d d dij ij i i i i ij ij

V V S V
V u f V u T S V         



    . (4) 

Assume N is shape function matrix, B is strain matrix, F 
is equivalent nodal force vector of external loads. Then the 
governing equation of FEM can be deduced from the prin-
ciple of virtual displacements 

 T T T
1d d d
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V V S     


B N f N T , (5) 

that is 

 T T pd d
Ve Vee e

V V        B F B F Q , (6) 

where Q is the equivalent nodal force to plastic-stress in-
crement field  

p which is called unbalanced forces in 
FEM: 

 T pd
Vee

V   Q B , (7) 

where Q indicates the extent beyond the yield surface. 

2.2  Fracture analysis on rock 

The unbalanced force can be used as the measurement of 
the unstability of the rock. The structure is unstable if there 
is unbalanced force in some area under the prescribed loads. 
So the unbalanced force can be used to evaluate the fractur-
ing of rock. 

(1) The initiation and propagation of the fracture 
The amount of unbalanced force incurred by external 

load represents the extent of the fracture propagation. The 
development of the unbalanced force is the process of the 
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propagation of the fracture. 
(2) Determination of fracture location 
The unbalanced forces are self-balanced. The area where 

unbalanced forces occur is the location where the fracture 
initiates. 

2.3  Criterion of the fracture propagation 

The 3-D mechanical status of the fracture area is compli-
cated. Consequently the analysis is mainly on 2-D elasto- 
plastic currently. The discussion of this section is also for 
2-D. As the conditions were not limited for 2-D, the result 
of the discussion is also applicable to 3-D. 

In the traditional theory of elasto-plastic fracture me-
chanics, the energy released by fracture propagation is pro-
vided for the newly formed surface. When the energy re-
leased G is more than double surface energy T, the fracture 
extends. In another word, the fracture criterion is G = Gc. 
The relationship between SIF and energy release rate is as 
follows [1]: 

 
2 2 2
I II III

2

K K K
G

E v


  , (8) 

where KI, KII and KIII are Stress Intensity Factor for mode-I, 
mode-II and mode-III respectively. 

G = Gc could be rewritten as K = Kc, where Kc is the limit 
of SIF. In fact, the SIF criterion and maximum energy re-
lease rate criterion are mathematically equivalent. Besides, 
the SIF criterion is applied successfully to the large region 
yield status analysis. 

It is difficult to calculate SIF when performing the FEM 
analysis. For example, suppose FEM is used to analyze the 
structure described in Figure 1, and the calculation is satis-
factorily approximate. When the loads  < c, K < Kc, the 
fracture does not extend. When  < c, K < Kc, the fracture is 
in the critical state and the mechanical solution of the entire 
structure is still available. When  < c, K < Kc, the fracture 
extends, and the mechanical solution does not exist. There 

 

Figure 1  Typical loading conditions of fracture. 

are new surfaces generated. At this time, external forces F* 
were required in order to restrict the propagation of fracture. 
That means if SIF incurred by F* meets the condition 
K*<KcK, rewritten as K*+K<Kc, the fracture will not ex-
tend. F* represents the unbalanced force derived from the 
elasto-plastic FEM calculation. 

For traditional FEM, the iteration does not converge 
when K < Kc as the FE topological structure does not change. 
Consequently the unbalanced force is incurred. The force 
opposite to the unbalanced force could maintain the struc-
ture stable together with external loads. In other words, if 
Q represents the unbalanced force, and F is external loads, 
the equation can be rewritten as 

 cQ FK K K   , (9) 

where KQ and KF are SIF under Q and F respectively. 
That is, the composition of SIF incurred by external 

loads and the force opposite to the unbalanced force is equal 
to the permitted SIF. When KKc, Q=0. The iteration of 
FEM is the process of seeking the minimum additional 
forces in order to restrict the propagation of fracture. These 
additional forces can be 0 or not. Further more, if the un-
balanced force is close to 0 after iteration in elasto-plastic 
FEM calculation, the fracture will not propagate or in the 
critical state. While if the unbalanced force cannot be iter-
ated to 0, the fracture will extend. As there is actually no 
additional unbalanced force in physical structure, the struc-
ture will fail in the area where unbalanced force occurs. 
That means the fracture extends through the unbalanced 
area. So the unbalanced force can be used to determine 
when and where the fracture extends. 

3  Numerical and physical experiments on pre-
crack rock specimens 

3.1  Cuboid rock specimen with single precrack 

Cuboid rock specimen with single precrack [21] (shown in 
Figure 2) was made of granite of 40 mm×20 mm×8 mm). 
The precrack was incised by ultrasound drill (1 mm), and 
then filled with the granite powder mixed with acrylate 
bond.  represents the angle between the precrack and the 
pressure-bearing surface. Its value is 15°, 30°, 45°, 60°, 75°, 
90° respectively. The length of precrack was fixed as 4 mm. 

The result of physical experiments was illustrated in Fig-
ure 3 [26]. When  was small, the crack extended smoothly 
before failure, and the start cracking pressure level was high. 
When  was larger than 60°, though the start cracking 
pressure level was low, the crack extended dramatically 
when the pressure was close to the upper limit, then the 
specimen failed suddenly. 

The finite element numerical meshes were generated ac-
cording to the physical specimens. The unbalanced force vector 
graphs were illustrated in Figure 4. The result is as follows: 
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Figure 2  Cuboid rock specimen with single precrack. 

 

Figure 3  Physical experiment result for single precrack cuboid [26]. 

(1) The unbalanced force firstly occurred in the pre-
crack’s tips, its direction was not along the precrack direc-
tion, but almost perpendicular to the precrack. The result 
was proved by physical experiments. 

(2) As the external loads increased, the crack began to 
extend, and its direction gradually tended to the direction of 
principal compressive stress, the same as the actual failure 
model illustrated in Figure 3. 

(3) The directions of crack extension may be perpen-
dicular to the precrack.  =15° and  45° in Figure 4 de-
scribed these situations. 

3.2  Cuboid rock specimen with double precracks 

The physical model of double precracks cuboid rock speci-      

 

Figure 4  Unbalanced force vector results of single precrack cuboid. 

men is illustrated in Figure 5. The length of the crack is still 
fixed as 4 mm. ① and ② represent the precracks. Their 
angles were kept as 45°. The rock bridge angle  increased 
from 75° to 120° (15° per step). Figure 6 shows the differ-
ent finite element mesh models. 

The physical experiment results are illustrated in Figure 7 
[26]. Initially the wing cracks occurred in both of the outer 
and inner tip areas of the precracks. The outer wing crack 
extended through a direction with an angle to the precrack. 
At the same time, the inner crack penetrated through different 

 

Figure 5  Cuboid rock specimen with double precracks. 
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Figure 6  Finite element model of the double precracks cuboid. 

 

Figure 7  Physical experiment results of double precracks cuboid [26]. 

ways. That is, the inner crack generated from precrack ① 
extended to the inner crack generated from precrack ②. 

Figure 8 shows the unbalanced force vector distributions 
for different finite element models. From the comparison 
between Figures 7 and 8, it is reasonable to use the unbal-
anced force direction as the propagation direction of the 
crack. 

4  Mesh size dependence analysis 

The microscopic characteristics of the structure (strain sof-
tening, localization and mesh dependence and etc.) have a 
significant influence on the ultimate failure mode. However, 
to decrease excessively the size of mesh is not an effective 
way in finite element analysis. When the mesh size is de-
creased to typical scale of the rock and concrete, the prop-
erty parameters are meaningless. What is worse, the tensile 
stress gets larger and larger when the mesh size is decreased 
in stress singularity area. That affects quite an area of finite 
element model. 

To analyze the mesh size dependence of the unbalanced 
force, we built the dam heel model illustrated in Figure 9. 
The bottom side was fixed, and the upper and downstream 
boundaries were normally fixed. Five different sizes of 
mesh were generated around the area of the dam heel (40 m 
×40 m). Figure 10 showed the mesh whose sizes were 3, 2.5, 
2, 1.5, 1.0, 0.5 m respectively. The external load was water 
pressure from the upper stream. 

The unbalanced force vector graphs corresponding to 
different mesh sizes were illustrated in Figure 11. As the 
mesh size got smaller, the arrows of the unbalanced force  

 

Figure 8  Unbalanced force vector results of double precracks cubid. 
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Figure 9  Finite element model of dam heel (m). 

 

Figure 10  Different mesh size finite element models of dam heel. 

got longer and concentrated, while the distribution areas 
were kept unchanged. As a result, it was reasonable to use 
the distribution of the unbalanced force as the crack propa-
gation direction. 

Figure 12 illustrated the Y (along the stream), Z (perpen-
dicular to the stream) directions and total unbalanced force 
magnitude corresponding to the different mesh sizes. When 
the mesh sizes decreased from 3 m (3% of the dam height) 
to 0.5 m (0.5% of the dam height), the unbalanced force 
magnitude of Y and Z directions increased by 6.4% and 
41.7% respectively, the total amount increased by 13.1% as 
the mesh sizes decreased 6 times. 

Figure 13 illustrated the plastic complementary energy 
norm (PCE, which describes the stability of the structure 
[24]) curves corresponding to the different mesh sizes. PCE 
norm was kept steady (0) before occurring (when the exter-
nal water pressure was 2.5 times to the benchmark), but  

 

Figure 11  Unbalanced force vector results for different mesh sizes. 

 

Figure 12  Unbalanced force magnitude results for different mesh sizes. 

varied after that. 
From the discussion above, we could conclude that the 

magnitude of the unbalanced force in the dam heel area is 
not significantly influenced by the mesh sizes. The unbal-
anced force concentrated in the dam heel area, and its dis-
tribution in other area is comparatively less except for stress 
concentration area (rock faults, dam heel etc.). As a result, 
the magnitude of the unbalanced force can be obtained by 
just summarizing the value of the dam heel area instead of 
specifying until the total amount is close to 0. Then the 
positive (or negative) amount is the unbalanced force mag-
nitude. 

Besides, though the PCE norm varies corresponding to 
the mesh size of the dam heel after occurrence, the catas-
trophe point keeps stable. It could be used as the criterion of  
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Figure 13  The PCE norm curve for different mesh sizes. 

the stability. 

5  Fracture analysis of dam heel of Baihetan 
arch dam 

Baihetan hydropower station located in Sichuan Province, 
China, the downstream area of Jinsha River. The height of 
arch dam is 289 m. The valley is asymmetrical “V”-shaped. 
Its left bank is gentle and right bank is steep, as shown in 
Figure 14. Both the 3-D finite element numerical and 
physical experiments were performed. The finite element 
model size is as follows: 

● Upper stream: 1.5 times of the height of dam (500 m); 
● Down stream: 2.5 times of the height of dam (700 m); 
● Left and right banks: 3 times of the height of dam 

(800 m each); 
● Height above the dam: 50 m; 
● Height beneath the dam: 324 m. 
Various rock materials and faults were simulated. The fi-

nite element mesh model is shown in Figure 15. 
The physical model was built in a steel frame whose size 

is 4.6 m×4.6m×2.8 m. The model scale is 1:250. Figures 16 
and 17 are the physical arch dam model and loading device. 

Figure 18 illustrated the unbalanced force contour maps 
of dam heel area corresponding to different water loads. 
When the load was normal (1.0 water pressure), the dam 
worked in elastic condition, no unbalanced force was incurred.  

 

Figure 14  The environment of the dam location. 

 

Figure 15  Numerical mesh model of Baihetan arch dam. 

 

Figure 16  The physical model of arch dam. 

 

Figure 17  The loading devices. 

 

Figure 18  Photographs of the experiment platform. 
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As the load increased, the unbalanced force occurred, and 
became more in line with the loads. 

The unbalanced force concentrated in the upper stream 
river bed area near the dam heel where there is a default 
crossing. When the work load was 1.5 times normal pres-
sure, the fault worked in compressive-shear stress condition. 
When the work load was 2.0 times normal pressure, the 
fault worked in tensile-shear stress condition. 

The final crack picture was shown in Figure 19. The 
crack propagation of the dam heel river bed area corre-
sponding to the water loads was shown in Figure 20. There  

 

Figure 19  The final crack status of the dam heel river bed area. 

 

Figure 20  Crack propagation of the dam heel river bed area correspond-
ing to the water loads. 

was initial crack incurred in the upper stream river bed 
(about 14.5 m to the dam heel) when the work load was 1.5 
times water pressure, the same as the numerical results. 
When the work load increased to 2.5 times water pressure, 
the crack penetrated through the river bed. 

6  Conclusion 

This paper presents a new theory focused on the fracture ini-
tiation and propagation based on the unbalanced force derived 
from elasto-plastic finite element analysis of DRT. The area of 
the structure where the unbalanced force occurred is the loca-
tion where the fracture may initiate. The distribution area and 
propagation of the unbalanced force could be the indication 
of the fracture propagation direction. Mesh size has little 
effect in fracture analysis. This theory could be implemented 
in the analysis of practical fracture initiation and propagation 
based on 3-D nonlinear finite element analysis which had been 
widely used in rock soil engineering. Compared with other 
fracture analysis method, the method in this paper does not 
need any extra parameters, and can avoid complex topological 
calculation of FEM mesh in fracture propagation analysis. 

The composition of SIF incurred by external loads and un-
balanced force is equal to the permitted SIF when small area 
of the structure yielded and the fracture began to extend. 
Compared with SIF incurred by external loads, the unbal-
anced force is the force calculated by FEM which is beyond 
the yield surface, as a result the theory could also be applied 
to large yield area. The unbalanced force and SIF incurred 
actually represent the propagation status of the fracture. The 
numerical and physical experiment results have proved that 
this theory could be effective in evaluating the fracture 
propagation. 
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